13 resultados para Holmes.

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this thesis reports the structural changes induced on micelles under a variety of conditions. The micelles of a liquid crystal film and dilute solutions of micelles were subjected to high pressure CO2 and selected hydrocarbon environments. Using small angle neutron scattering (SANS) techniques the spacing between liquid crystal micelles was measured in-situ. The liquid crystals studied were templated from different surfactants with varying structural characteristics. Micelles of a dilute surfactant solution were also subjected to elevated pressures of varying gas atmospheres. Detailed modelling of the in-situ SANS experiments revealed information of the size and shape of the micelles at a number of different pressures. Also reported in this thesis is the characterisation of mesoporous materials in the confined channels of larger porous materials. Periodic mesoporous organosilicas (PMOs) were synthesised within the channels of anodic alumina membranes (AAM) under different conditions, including drying rates and precursor concentrations. In-situ small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) was used to determine the pore morphology of the PMO within the AAM channels. PMO materials were also used as templates in the deposition of gold nanoparticles and subsequently used in the synthesis of germanium nanostructures. Polymer thin films were also employed as templates for the directed deposition of gold nanoparticles which were again used as seeds for the production of germanium nanostructures. A supercritical CO2 (sc-CO2) technique was successfully used during the production of the germanium nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and information technologies. Ferroelectrics have already been established as a dominant branch in the electronics sector because of their diverse application range such as ferroelectric memories, ferroelectric tunnel junctions, etc. The on-going dimensional downscaling of materials to allow packing of increased numbers of components onto integrated circuits provides the momentum for the evolution of nanostructured ferroelectric materials and devices. Nanoscaling of ferroelectric materials can result in a modification of their functionality, such as phase transition temperature or Curie temperature (TC), domain dynamics, dielectric constant, coercive field, spontaneous polarisation and piezoelectric response. Furthermore, nanoscaling can be used to form high density arrays of monodomain ferroelectric nanostructures, which is desirable for the miniaturisation of memory devices. This thesis details the use of various types of nanostructuring approaches to fabricate arrays of ferroelectric nanostructures, particularly non-oxide based systems. The introductory chapter reviews some exemplary research breakthroughs in the synthesis, characterisation and applications of nanoscale ferroelectric materials over the last decade, with priority given to novel synthetic strategies. Chapter 2 provides an overview of the experimental methods and characterisation tools used to produce and probe the properties of nanostructured antimony sulphide (Sb2S3), antimony sulpho iodide (SbSI) and lead titanate zirconate (PZT). In particular, Chapter 2 details the general principles of piezoresponse microscopy (PFM). Chapter 3 highlights the fabrication of arrays of Sb2S3 nanowires with variable diameters using newly developed solventless template-based approach. A detailed account of domain imaging and polarisation switching of these nanowire arrays is also provided. Chapter 4 details the preparation of vertically aligned arrays of SbSI nanorods and nanowires using a surface-roughness assisted vapour-phase deposition method. The qualitative and quantitative nanoscale ferroelectric properties of these nanostructures are also discussed. Chapter 5 highlights the fabrication of highly ordered arrays of PZT nanodots using block copolymer self-assembled templates and their ferroelectric characterisation using PFM. Chapter 6 summarises the conclusions drawn from the results reported in chapters 3, 4 and 5 and the future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Li-ion battery has for several years been at the forefront of powering an ever-increasing number of modem consumer electronic devices such as laptops, tablet PCs, cell phones, portable music players etc., while in more recent times, has also been sought to power a range of emerging electric and hybrid-electric vehicle classes. Given their extreme popularity, a number of features which define the performance of the Li-ion battery have become a target of improvement and have garnered tremendous research effort over the past two decades. Features such as battery capacity, voltage, lifetime, rate performance, together with important implications such as safety, environmental benignity and cost have all attracted attention. Although properties such as cell voltage and theoretical capacity are bound by the selection of electrode materials which constitute its interior, other performance makers of the Li-ion battery such as actual capacity, lifetime and rate performance may be improved by tailoring such materials with characteristics favourable to Li+ intercalation. One such tailoring route involves shrinking of the constituent electrode materials to that of the nanoscale, where the ultra-small diameters may bestow favourable Li+ intercalation properties while providing a necessary mechanical robustness during routine electrochemical operation. The work detailed in this thesis describes a range of synthetic routes taken in nanostructuring a selection of choice Li-ion positive electrode candidates, together with a review of their respective Li-ion performances. Chapter one of this thesis serves to highlight a number of key advancements which have been made and detailed in the literature over recent years pertaining to the use of nanostructured materials in Li-ion technology. Chapter two provides an overview of the experimental conditions and techniques employed in the synthesis and electrochemical characterisation of the as-prepared electrode materials constituting this doctoral thesis. Chapter three details the synthesis of small-diameter V2O5 and V2O5/TiO2 nanocomposite structures prepared by a novel carbon nanocage templating method using liquid precursors. Chapter four details a hydrothermal synthesis and characterisation of nanostructured β-LiVOPO4 powders together with an overview of their Li+ insertion properties while chapter five focuses on supercritical fluid synthesis as one technique in the tailoring of FeF2 and CoF2 powders having potentially appealing Li-ion 'conversion' properties. Finally, chapter six summarises the overall conclusions drawn from the results presented in this thesis, coupled with an indication of potential future work which may be explored upon the materials described in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconductor nanowires, particularly group 14 semiconductor nanowires, have been the subject of intensive research in the recent past. They have been demonstrated to provide an effective, versatile route towards the continued miniaturisation and improvement of microelectronics. This thesis aims to highlight some novel ways of fabricating and controlling various aspects of the growth of Si and Ge nanowires. Chapter 1 highlights the primary technique used for the growth of nanowires in this study, namely, supercritical fluid (SCF) growth reactions. The advantages (and disadvantages) of this technique for the growth of Si and Ge nanowires are highlighted, citing numerous examples from the past ten years. The many variables involved in this technique are discussed along with the resultant characteristics of nanowires produced (diameter, doping, orientation etc.). Chapter 2 outlines the experimental methodologies used in this thesis. The analytical techniques used for the structural characterisation of nanowires produced are also described as well as the techniques used for the chemical analysis of various surface terminations. Chapter 3 describes the controlled self-seeded growth of highly crystalline Ge nanowires, in the absence of conventional metal seed catalysts, using a variety of oligosilylgermane precursors and mixtures of germane and silane compounds. A model is presented which describes the main stages of self-seeded Ge nanowire growth (nucleation, coalescence and Ostwald ripening) from the oligosilylgermane precursors and in conjunction with TEM analysis, a mechanism of growth is proposed. Chapter 4 introduces the metal assisted etching (MAE) of Si substrates to produce Si nanowires. A single step metal-assisted etch (MAE) process, utilising metal ion-containing HF solutions in the absence of an external oxidant, was developed to generate heterostructured Si nanowires with controllable porous (isotropically etched) and non-porous (anisotropically etched) segments. In Chapter 5 the bottom-up growth of Ge nanowires, similar to that described in Chapter 3, and the top down etching of Si, described in Chapter 4, are combined. The introduction of a MAE processing step in order to “sink” the Ag seeds into the growth substrate, prior to nanowire growth, is shown to dramatically decrease the mean nanowire diameters and to narrow the diameter distributions. Finally, in Chapter 6, the biotin – streptavidin interaction was explored for the purposes of developing a novel Si junctionless nanowire transistor (JNT) sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional semiconductor nanowires are considered to be promising materials for future nanoelectronic applications. However, before these nanowires can be integrated into such applications, a thorough understanding of their growth behaviour is necessary. In particular, methods that allow the control over nanowire growth are deemed especially important as it is these methods that will enable the control of nanowire dimensions such as length and diameter (high aspect ratios). The production of nanowires with high-aspect ratios is vital in order to take advantage of the unique properties experienced at the nanoscale, thus allowing us to maximise their use in devices. Additionally, the development of low-resistivity interconnects is desirable in order to connect such nanowires in multi-nanowire components. Consequently, this thesis aims to discuss the synthesis and characterisation of germanium (Ge) nanowires and platinum (Pt) interconnects. Particular emphasis is placed on manipulating the nanowire growth kinetics to produce high aspect ratio structures. The discussion of Pt interconnects focuses on the development of low-resistivity devices and the electrical and structural analysis of those devices. Chapter 1 reviews the most critical aspects of Ge nanowire growth which must be understood before they can be integrated into future nanodevices. These features include the synthetic methods employed to grow Ge nanowires, the kinetic and thermodynamic aspects of their growth and nanowire morphology control. Chapter 2 outlines the experimental methods used to synthesise and characterise Ge nanowires as well as the methods used to fabricate and analyse Pt interconnects. Chapter 3 discusses the control of Ge nanowire growth kinetics via the manipulation of the supersaturation of Ge in the Au/Ge binary alloy system. This is accomplished through the use of bi-layer films, which pre-form Au/Ge alloy catalysts before the introduction of the Ge precursor. The growth from these catalysts is then compared with Ge nanowire growth from standard elemental Au seeds. Nanowires grown from pre-formed Au/Ge alloy seeds demonstrate longer lengths and higher growth rates than those grown from standard Au seeds. In-situ TEM heating on the Au/Ge bi-layer films is used to support the growth characteristics observed. Chapter 4 extends the work of chapter 3 by utilising Au/Ag/Ge tri-layer films to enhance the growth rates and lengths of Ge nanowires. These nanowires are grown from Au/Ag/Ge ternary alloy catalysts. Once again, the supersaturation is influenced, only this time it is through the simultaneous manipulation of both the solute concentration and equilibrium concentration of Ge in the Au/Ag/Ge ternary alloy system. The introduction of Ag to the Au/Ge binary alloy lowers the equilibrium concentration, thus increasing the nanowire growth rate and length. Nanowires with uniform diameters were obtained via synthesis from AuxAg1-x alloy nanoparticles. Manifestation of the Gibbs-Thomson effect, resulting from the dependence of the mean nanowire length as a function of diameter, was observed for all of the nanowires grown from the AuxAg1-x nanoparticles. Finally, in-situ TEM heating was used to support the nanowire growth characteristics. Chapter 5 details the fabrication and characterisation of Pt interconnects deposited by electron beam induced deposition of two different precursors. The fabrication is conducted inside a dual beam FIB. The electrical and structural characteristics of interconnects deposited from a standard organometallic precursor and a novel carbon-free precursor are compared. The electrical performance of the carbon-free interconnects is shown to be superior to that of the organometallic devices and this is correlated to the structural composition of both interconnects via in-situ TEM heating and HAADF-STEM analysis. Annealing of the interconnects is carried out under two different atmospheres in order to reduce the electrical resistivity even further. Finally, chapter 6 presents some important conclusions and summarises each of the previous chapters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directed self-assembly (DSA) of block copolymers (BCPs) is a prime candidate to further extend dimensional scaling of silicon integrated circuit features for the nanoelectronic industry. Top-down optical techniques employed for photoresist patterning are predicted to reach an endpoint due to diffraction limits. Additionally, the prohibitive costs for “fabs” and high volume manufacturing tools are issues that have led the search for alternative complementary patterning processes. This thesis reports the fabrication of semiconductor features from nanoscale on-chip etch masks using “high χ” BCP materials. Fabrication of silicon and germanium nanofins via metal-oxide enhanced BCP on-chip etch masks that might be of importance for future Fin-field effect transistor (FinFETs) application are detailed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galvanic replacement is a versatile synthetic strategy for the synthesis of alloy and hollow nanostructures. The structural evolution of single crystalline and multiply twinned nanoparticles <20 nm in diameter and capped with oleylamine is systematically studied. Changes in chemical composition are dependent on the size and crystallinity of the parent nanoparticle. The effects of reaction temperature and rate of precursor addition are also investigated. Galvanic replacement of single crystal spherical and truncated cubic nanoparticles follows the same mechanism to form hollow octahedral nanoparticles, a mechanism which is not observed for galvanic replacement of Ag templates in aqueous systems. Multiply twinned nanoparticles can form nanorings or solid alloys by manipulating the reaction conditions. Oleylamine-capped Ag nanoparticles are highly adaptable templates to synthesize a range of hollow and alloy nanostructures with tuneable localised surface plasmon resonance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional vanadium pentoxide (V2O5) material architectures in the form of inverse opals (IOs) were fabricated using a simple electrodeposition process into artificial opal templates on stainless steel foil using an aqueous solution of VOSO4.χH2O with added ethanol. The direct deposition of V2O5 IOs was compared with V2O5 planar electrodeposition and confirms a similar progressive nucleation and growth mechanism. An in-depth examination of the chemical and morphological nature of the IO material was performed using X-ray crystallography, X-ray photoelectron spectroscopy, Raman scattering and scanning/transmission electron microscopy. Electrodeposition is demonstrated to be a function of the interstitial void fraction of the artificial opal and ionic diffusivity that leads to high quality, phase pure V2O5 inverse opals is not adversely affected by diffusion pathway tortuosity. Methods to alleviate electrodeposited overlayer formation on the artificial opal templates for the fabrication of the porous 3D structures are also demonstrated. Such a 3D material is ideally suited as a cathode for lithium ion batteries, electrochromic devices, sensors and for applications requiring high surface area electrochemically active metal oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes feasible and improved ways towards enhanced nanowire growth kinetics by reducing the equilibrium solute concentration in the liquid collector phase in a vapor-liquid-solid (VLS) like growth model. Use of bi-metallic alloy seeds (AuxAg1-x) influences the germanium supersaturation for a faster nucleation and growth kinetics. Nanowire growth with ternary eutectic alloys shows Gibbs-Thompson effect with diameter dependent growth rate. In-situ transmission electron microscopy (TEM) annealing experiments directly confirms the role of equilibrium concentration in nanowire growth kinetics and was used to correlate the equilibrium content of metastable alloys with the growth kinetics of Ge nanowires. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires were found to vary as a function of nanowire diameter and eutectic alloy composition.