5 resultados para High-pressure Adsorption

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure, physical properties and oxidative stability of emulsions treated by colloid mill (CM), conventional homogenization (CH, 15 MPa) and ultra-high-pressure homogenization (UHPH, 100–300 MPa) by using different concentrations of 1, 3 and 5 g/100 g of sodium caseinate (SC), were evaluated. The application of UHPH treatment at 200 and 300 MPa resulted in emulsions that were highly stable to creaming and oxidation, especially when the protein content increased from 1 to 3 and 5 g/100 g. Further, increasing the protein content to 3 and 5 g/100 g in UHPH emulsions tended to change the rheological behavior from Newtonian to shear thinning. CH emulsions containing 1 g/100 g of protein exhibited Newtonian flow behavior with lower tendencies to creaming compared to those formulated with 3 or 5 g/100 g. This study has proved that UHPH processing at pressures (200–300 MPa) and in the presence of sufficient amount of sodium caseinate (5 g/100 g), produces emulsions with oil droplets in nano-/submicron scale with a narrow size distribution and high physical and oxidative stabilities, compared to CM and CH treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work described in this thesis reports the structural changes induced on micelles under a variety of conditions. The micelles of a liquid crystal film and dilute solutions of micelles were subjected to high pressure CO2 and selected hydrocarbon environments. Using small angle neutron scattering (SANS) techniques the spacing between liquid crystal micelles was measured in-situ. The liquid crystals studied were templated from different surfactants with varying structural characteristics. Micelles of a dilute surfactant solution were also subjected to elevated pressures of varying gas atmospheres. Detailed modelling of the in-situ SANS experiments revealed information of the size and shape of the micelles at a number of different pressures. Also reported in this thesis is the characterisation of mesoporous materials in the confined channels of larger porous materials. Periodic mesoporous organosilicas (PMOs) were synthesised within the channels of anodic alumina membranes (AAM) under different conditions, including drying rates and precursor concentrations. In-situ small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) was used to determine the pore morphology of the PMO within the AAM channels. PMO materials were also used as templates in the deposition of gold nanoparticles and subsequently used in the synthesis of germanium nanostructures. Polymer thin films were also employed as templates for the directed deposition of gold nanoparticles which were again used as seeds for the production of germanium nanostructures. A supercritical CO2 (sc-CO2) technique was successfully used during the production of the germanium nanostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The composition of equine milk differs considerably from that of the milk of the principal dairying species, i.e., the cow, buffalo, goat and sheep. Because equine milk resembles human milk in many respects and is claimed to have special therapeutic properties, it is becoming increasingly popular in Western Europe, where it is produced on large farms in several countries. Equine milk is considered to be highly digestible, rich in essential nutrients and to possess an optimum whey protein:casein ratio, making it very suitable as a substitute for bovine milk in paediatric dietetics. There is some scientific basis for the special nutritional and health-giving properties of equine milk but this study provides a comprehensive analysis of the composition and physico-chemical properties of equine milk which is required to fully exploit its potential in human nutrition. Quantification and distribution of the nitrogenous components and principal salts of equine milk are reported. The effects of the high concentration of ionic calcium, large casein micelles (~ 260 nm), low protein, lack of a sulphydryl group in equine β-lactoglobulin and a very low level of κ-casein on the physico-chemical properties of equine milk are reported. This thesis provides an insight into the stability of equine casein micelles to heat, ethanol, high pressure, rennet or acid. Differences in rennet- and acid-induced coagulation between equine and bovine milk are attributed not only to the low casein content of equine milk but also to differences in the mechanism by which the respective micelles are stabilized. It has been reported that β-casein plays a role in the stabilization of equine casein micelles and proteomic techniques support this view. In this study, equine κ-casein appeared to be resistant to hydrolysis by calf chymosin but equine β-casein was readily hydrolysed. Resolution of equine milk proteins by urea-PAGE showed the multi-phosphorylated isoforms of equine αs- and β-caseins and capillary zone electrophoresis showed 3 to 7 phosphorylated residues in equine β-casein. In vitro digestion of equine β-casein by pepsin and Corolase PP™ did not produce casomorphins BCM-5 or BCM-7, believed to be harmful to human health. Electron microscopy provided very clear, detailed images of equine casein micelles in their native state and when renneted or acidified. Equine milk formed flocs rather then a gel when renneted or acidified which is supported by dynamic oscillatory analysis. The results presented in this thesis will assist in the development of new products from equine milk for human consumption which will retain some of its unique compositional and health-giving properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research work in this thesis reports rapid separation of biologically important low molecular weight compounds by microchip electrophoresis and ultrahigh liquid chromatography. Chapter 1 introduces the theory and principles behind capillary electrophoresis separation. An overview of the history, different modes and detection techniques coupled to CE is provided. The advantages of microchip electrophoresis are highlighted. Some aspects of metal complex analysis by capillary electrophoresis are described. Finally, the theory and different modes of the liquid chromatography technology are presented. Chapter 2 outlines the development of a method for the capillary electrophoresis of (R, S) Naproxen. Variable parameters of the separation were optimized (i.e. buffer concentration and pH, concentration of chiral selector additives, applied voltage and injection condition).The method was validated in terms of linearity, precision, and LOD. The optimized method was then transferred to a microchip electrophoresis system. Two different types of injection i.e. gated and pinched, were investigated. This microchip method represents the fastest reported chiral separation of Naproxen to date. Chapter 3 reports ultra-fast separation of aromatic amino acid by capillary electrophoresis using the short-end technique. Variable parameters of the separation were optimized and validated. The optimized method was then transferred to a microchip electrophoresis system where the separation time was further reduced. Chapter 4 outlines the use of microchip electrophoresis as an efficient tool for analysis of aluminium complexes. A 2.5 cm channel with linear imaging UV detection was used to separate and detect aluminium-dopamine complex and free dopamine. For the first time, a baseline, separation of aluminium dopamine was achieved on a 15 seconds timescale. Chapter 5 investigates a rapid, ultra-sensitive and highly efficient method for quantification of histamine in human psoriatic plaques using microdialysis and ultrahigh performance liquid chromatography with fluorescence detection. The method utilized a sub-two-micron packed C18 stationary phase. A fluorescent reagent, 4-(1-pyrene) butyric acid N-hydroxysuccinimide ester was conjugated to the primary and secondary amino moieties of histamine. The dipyrene-labeled histamine in human urine was also investigated by ultrahigh pressure liquid chromatography using a C18 column with 1.8 μm particle diameter. These methods represent one of the fastest reported separations to date of histamine using fluorescence detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Renal failure (RF) is associated with an over activation of the sympathetic nervous system. The aim of this thesis was to investigate the hypothesis that as the kidney progresses into RF there is an inappropriate and sustained activation of renal afferent nerves which results in a dysregulation of basal RSNA and reflexly controlled RSNA by the high and low pressure baroreceptors. Baroreflex gain curves for both RSNA and HR were generated in control and RF rats. This study clearly showed a blunted high-pressure baroreflex in RF rats, an impairment which was almost completely corrected by bilateral renal denervation. The integrity of the low-pressure cardiopulmonary receptors to inhibit RSNA was investigated using acute saline volume. Again, a blunted reflex sympatho-inhibition of RSNA was observed, which was corrected by renal denervation. Finally a functional study to examine how the renal excretory response to volume expansion differed in RF was carried out. This study revealed an impairment of the low-pressure baroreflex control of the sympathetic outflow. The result of these studies suggest that cisplatin induced RF initiates a neural signal from within the kidney, which over rides the normal reflex regulation of RSNA by the high and low – pressure baroreceptors and that this impairment in function can be normalised by renal denervation. This raises further questions as to the mechanisms involved in the afferent over activation arising from the diseased kidneys.