3 resultados para High-dimensional data visualization

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One problem in most three-dimensional (3D) scalar data visualization techniques is that they often overlook to depict uncertainty that comes with the 3D scalar data and thus fail to faithfully present the 3D scalar data and have risks which may mislead users’ interpretations, conclusions or even decisions. Therefore this thesis focuses on the study of uncertainty visualization in 3D scalar data and we seek to create better uncertainty visualization techniques, as well as to find out the advantages/disadvantages of those state-of-the-art uncertainty visualization techniques. To do this, we address three specific hypotheses: (1) the proposed Texture uncertainty visualization technique enables users to better identify scalar/error data, and provides reduced visual overload and more appropriate brightness than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (2) The proposed Linked Views and Interactive Specification (LVIS) uncertainty visualization technique enables users to better search max/min scalar and error data than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (3) The proposed Probabilistic Query uncertainty visualization technique, in comparison to traditional Direct Volume Rendering (DVR) methods, enables radiologists/physicians to better identify possible alternative renderings relevant to a diagnosis and the classification probabilities associated to the materials appeared on these renderings; this leads to improved decision support for diagnosis, as demonstrated in the domain of medical imaging. For each hypothesis, we test it by following/implementing a unified framework that consists of three main steps: the first main step is uncertainty data modeling, which clearly defines and generates certainty types of uncertainty associated to given 3D scalar data. The second main step is uncertainty visualization, which transforms the 3D scalar data and their associated uncertainty generated from the first main step into two-dimensional (2D) images for insight, interpretation or communication. The third main step is evaluation, which transforms the 2D images generated from the second main step into quantitative scores according to specific user tasks, and statistically analyzes the scores. As a result, the quality of each uncertainty visualization technique is determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adequate hand-washing has been shown to be a critical activity in preventing the transmission of infections such as MRSA in health-care environments. Hand-washing guidelines published by various health-care related institutions recommend a technique incorporating six hand-washing poses that ensure all areas of the hands are thoroughly cleaned. In this paper, an embedded wireless vision system (VAMP) capable of accurately monitoring hand-washing quality is presented. The VAMP system hardware consists of a low resolution CMOS image sensor and FPGA processor which are integrated with a microcontroller and ZigBee standard wireless transceiver to create a wireless sensor network (WSN) based vision system that can be retargeted at a variety of health care applications. The device captures and processes images locally in real-time, determines if hand-washing procedures have been correctly undertaken and then passes the resulting high-level data over a low-bandwidth wireless link. The paper outlines the hardware and software mechanisms of the VAMP system and illustrates that it offers an easy to integrate sensor solution to adequately monitor and improve hand hygiene quality. Future work to develop a miniaturized, low cost system capable of being integrated into everyday products is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose an orthogonal chirp division multiplexing (OCDM) technique for coherent optical communication. OCDM is the principle of orthogonally multiplexing a group of linear chirped waveforms for high-speed data communication, achieving the maximum spectral efficiency (SE) for chirp spread spectrum, in a similar way as the orthogonal frequency division multiplexing (OFDM) does for frequency division multiplexing. In the coherent optical (CO)-OCDM, Fresnel transform formulates the synthesis of the orthogonal chirps; discrete Fresnel transform (DFnT) realizes the CO-OCDM in the digital domain. As both the Fresnel and Fourier transforms are trigonometric transforms, the CO-OCDM can be easily integrated into the existing CO-OFDM systems. Analyses and numerical results are provided to investigate the transmission of CO-OCDM signals over optical fibers. Moreover, experiments of 36-Gbit/s CO-OCDM signal are carried out to validate the feasibility and confirm the analyses. It is shown that the CO-OCDM can effectively compensate the dispersion and is more resilient to fading and noise impairment than OFDM.