7 resultados para High throughput
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Advances in culture independent technologies over the last decade have highlighted the pivotal role which the gut microbiota plays in maintaining human health. Conversely, perturbations to the composition or actions of the ‘normal/functioning’ microbiota have been frequently associated with the pathogenesis of several disease states. Therefore the selective modulation of enteric microbial communities represents a viable target for the development of novel treatments for such diseases. Notably, while bovine whey proteins and exercise have been shown to positively influence several physiological processes, such as energy balance, their effect on the composition or functionality of the gut microbiota remains largely unknown. In this thesis, a variety of ex vivo, murine and human models are used in conjunction with high-throughput DNA sequencing-based analysis to provide valuable and novel insights into the impact of both whey proteins and exercise on enteric microbial communities. Overall the results presented in this thesis highlight that the consumption both whey protein isolate (WPI), and individual component proteins of whey such as bovine serum albumin (BSA) and lactoferrin, reduce high fat diet associated body weight gain and are associated with beneficial alterations within the murine gut microbiota. Although the impact of exercise on enteric microbial communities remains less clear, it may be that longer term investigations are required for the true effect of exercise on the gut microbiota to be fully elucidated.
Resumo:
To screen for novel ribosomally synthesised antimicrobials, in-silico genome mining was performed on all publically available fully sequenced bacterial genomes. 49 novel type 1 lantibiotic clusters were identified from a number of species, genera and phyla not usually associated with lantibiotic production, and indicates high prevalence. A crucial step towards the commercialisation of fermented beverages is the characterisation of the microbial content. To achieve this goal, we applied next-generation sequencing techniques to analyse the bacterial and yeast populations of the organic, symbiotically-fermented beverages kefir, water kefir and kombucha. A number of minor components were revealed, many of which had not previously been associated with these beverages. The dominant microorganism in each of the water kefir grains and fermentates was Zymomonas, an ethanol-producing bacterium that had not previously been detected on such a scale. These studies represent the most accurate description of these populations to date, and should aid in future starter design and in determining which species are responsible for specific attributes of the beverages. Finally, high-throughput robotics was applied to screen for the presence of antimicrobial producers associated with these beverages. This revealed a low frequency of bacteriocin production amongst the bacterial isolates, with only lactococcins A, B and LcnN of lactococcin M being identified. However, a proteinaceous antimicrobial produced by the yeast Dekkera bruxellensis, isolated from kombucha, was found to be active against Lactobacillus bulgaricus. This peptide was patially purified.
Resumo:
RNA editing is a biological phenomena that alters nascent RNA transcripts by insertion, deletion and/or substitution of one or a few nucleotides. It is ubiquitous in all kingdoms of life and in viruses. The predominant editing event in organisms with a developed central nervous system is Adenosine to Inosine deamination. Inosine is recognized as Guanosine by the translational machinery and reverse-transcriptase. In primates, RNA editing occurs frequently in transcripts from repetitive regions of the genome. In humans, more than 500,000 editing instances have been identified, by applying computational pipelines on available ESTs and high-throughput sequencing data, and by using chemical methods. However, the functions of only a small number of cases have been studied thoroughly. RNA editing instances have been found to have roles in peptide variants synthesis by non-synonymous codon substitutions, transcript variants by alterations in splicing sites and gene silencing by miRNAs sequence modifications. We established the Database of RNA EDiting (DARNED) to accommo-date the reference genomic coordinates of substitution editing in human, mouse and fly transcripts from published literatures, with additional information on edited genomic coordinates collected from various databases e.g. UCSC, NCBI. DARNED contains mostly Adenosine to Inosine editing and allows searches based on genomic region, gene ID, and user provided sequence. The Database is accessible at http://darned.ucc.ie RNA editing instances in coding region are likely to result in recoding in protein synthesis. This encouraged me to focus my research on the occurrences of RNA editing specific CDS and non-Alu exonic regions. By applying various filters on discrepancies between available ESTs and their corresponding reference genomic sequences, putative RNA editing candidates were identified. High-throughput sequencing was used to validate these candidates. All predicted coordinates appeared to be either SNPs or unedited.
Resumo:
The global rise in antibiotic resistance is a significant problem facing healthcare professionals. In particular within the cystic fibrosis (CF) lung, bacteria can establish chronic infection and resistance to a wide array of antibiotic therapies. One of the principle pathogens associated with chronic infection in the CF lung is Pseudomonas aeruginosa. P. aeruginosa can establish chronic infection in the CF lung partly through the use of the biofilm mode of growth. This biofilm mode of growth offers a considerable degree of protection from a wide variety of challenges such as the host immune system or antibiotic therapy. The threat posed by the emergence of chronic pathogens is prompting the development of next generation antimicrobials. The biofilm mode of growth is often central to the establishment of chronic infection and the development of antibiotic resistance. Thus, targeting biofilm formation has emerged as one of the principle strategies for the development of next generation antimicrobials. In this thesis two separate approaches were used to identify potential anti - biofilm targets. The first strategy focused on the identification of novel genes with a role in a biofilm formation. High throughput screening identified almost 300 genes which had a role in biofilm formation. A number of these genes were characterised at a phenotypic and a molecular level. The second strategy focused on the identification of compounds capable of inhibiting biofilm formation. A collection of marine sponge isolated bacteria were screened for the ability to inhibit the central pathway regulating biofilm formation, quorum sensing. A number of distinct isolates were identified that had quorum sensing inhibition activity from which, a Pseudomonas isolate was selected for further characterisation. A specific compound capable of inhibiting quorum sensing was identified using chemical analytical technologies in the supernatant of this marine isolate.
Resumo:
Real time monitoring of oxygenation and respiration is on the cutting edge of bioanalysis, including studies of cell metabolism, bioenergetics, mitochondrial function and drug toxicity. This thesis presents the development and evaluation of new luminescent probes and techniques for intracellular O2 sensing and imaging. A new oxygen consumption rate (OCR) platform based on the commercial microfluidic perfusion channel μ-slides compatible with extra- and intracellular O2 sensitive probes, different cell lines and measurement conditions was developed. The design of semi-closed channels allowed cell treatments, multiplexing with other assays and two-fold higher sensitivity to compare with microtiter plate. We compared three common OCR platforms: hermetically sealed quartz cuvettes for absolute OCRs, partially sealed with mineral oil 96-WPs for relative OCRs, and open 96-WPs for local cell oxygenation. Both 96-WP platforms were calibrated against absolute OCR platform with MEF cell line, phosphorescent O2 probe MitoXpress-Intra and time-resolved fluorescence reader. Found correlations allow tracing of cell respiration over time in a high throughput format with the possibility of cell stimulation and of changing measurement conditions. A new multimodal intracellular O2 probe, based on the phosphorescent reporter dye PtTFPP, fluorescent FRET donor and two-photon antennae PFO and cationic nanoparticles RL-100 was described. This probe, called MM2, possesses high brightness, photo- and chemical stability, low toxicity, efficient cell staining and high-resolution intracellular O2 imaging with 2D and 3D cell cultures in intensity, ratiometric and lifetime-based modalities with luminescence readers and FLIM microscopes. Extended range of O2 sensitive probes was designed and studied in order to optimize their spectral characteristics and intracellular targeting, using different NPs materials, delivery vectors, ratiometric pairs and IR dyes. The presented improvements provide useful tool for high sensitive monitoring and imaging of intracellular O2 in different measurement formats with wide range of physiological applications.
Resumo:
High throughput next generation sequencing, together with advanced molecular methods, has considerably enhanced the field of food microbiology. By overcoming biases associated with culture dependant approaches, it has become possible to achieve novel insights into the nature of food-borne microbial communities. In this thesis, several different sequencing-based approaches were applied with a view to better understanding microbe associated quality defects in cheese. Initially, a literature review provides an overview of microbe-associated cheese quality defects as well as molecular methods for profiling complex microbial communities. Following this, 16S rRNA sequencing revealed temporal and spatial differences in microbial composition due to the time during the production day that specific commercial cheeses were manufactured. A novel Ion PGM sequencing approach, focusing on decarboxylase genes rather than 16S rRNA genes, was then successfully employed to profile the biogenic amine producing cohort of a series of artisanal cheeses. Investigations into the phenomenon of cheese pinking formed the basis of a joint 16S rRNA and whole genome shotgun sequencing approach, leading to the identification of Thermus species and, more specifically, the pathway involved in production of lycopene, a red coloured carotenoid. Finally, using a more traditional approach, the effect of addition of a facultatively heterofermentative Lactobacillus (Lactobacillus casei) to a Swiss-type cheese, in which starter activity was compromised, was investigated from the perspective of its ability to promote gas defects and irregular eye formation. X-ray computed tomography was used to visualise, using a non-destructive method, the consequences of the undesirable gas formation that resulted. Ultimately this thesis has demonstrated that the application of molecular techniques, such as next generation sequencing, can provide a detailed insight into defect-causing microbial populations present and thereby may underpin approaches to optimise the quality and consistency of a wide variety of cheeses.
Resumo:
The two potato cyst nematode species, Globodera pallida and G. rostochiensis, are among the most important pests of potato. PCN are difficult to manage, while the two species respond differently to the main control methods. An increase in the incidence of G. pallida had been reported and is generally attributed to greater effectiveness of control measures against G. rostochiensis. The status of PCN in Ireland was studied using PCR. The results demonstrated qPCR to be an efficient means of high-throughput PCN sampling, being able to accurately identify both species in mixed-species populations. Species discrimination using qPCR revealed an increase in the incidence of G. pallida in Ireland in the absence of G. pallida-selective control measures. The population dynamics of G. pallida and G. rostochiensis in Ireland were studied in mixed- and single-species competition assays in vivo. G. pallida proved to be the more successful species, with greater multiplication in mixed- than single-species populations, with G. rostochiensis showing the opposite. This effect was similarly observed in staggered inoculation trials and population proportion trials. It was hypothesised that the greater G. pallida competitiveness could be attributed to its later hatch. G. pallida exhibited a later peak in hatching activity and more prolonged hatch, relative to G. rostochiensis. G. rostochiensis hatch was significantly reduced in mixedspecies hatching assays. G. pallida hatch was significantly higher when hatch was induced in potato root leachates containing G. rostochiensis-specific compounds, indicating that G. pallida hatch is stimulated upon perception of G. rostochiensis–derived compounds. Rhizotron studies revealed that root damage, caused by feeding of the early-hatching G. rostochiensis, resulted in increased lateral root proliferation and significantly increased G. pallida multiplication. Split-root trials indicated a significant G. pallida-induced ISR effect. G. rostochiensis multiplication was significantly reduced in split-root rhizotrons when G. pallida colonised roots before or after G. rostochiensis infection.