6 resultados para High refractive index
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.
Development of large-scale colloidal crystallisation methods for the production of photonic crystals
Resumo:
Colloidal photonic crystals have potential light manipulation applications including; fabrication of efficient lasers and LEDs, improved optical sensors and interconnects, and improving photovoltaic efficiencies. One road-block of colloidal selfassembly is their inherent defects; however, they can be manufactured cost effectively into large area films compared to micro-fabrication methods. This thesis investigates production of ‘large-area’ colloidal photonic crystals by sonication, under oil co-crystallization and controlled evaporation, with a view to reducing cracking and other defects. A simple monotonic Stöber particle synthesis method was developed producing silica particles in the range of 80 to 600nm in a single step. An analytical method assesses the quality of surface particle ordering in a semiquantitative manner was developed. Using fast Fourier transform (FFT) spot intensities, a grey scale symmetry area method, has been used to quantify the FFT profiles. Adding ultrasonic vibrations during film formation demonstrated large areas could be assembled rapidly, however film ordering suffered as a result. Under oil cocrystallisation results in the particles being bound together during film formation. While having potential to form large areas, it requires further refinement to be established as a production technique. Achieving high quality photonic crystals bonded with low concentrations (<5%) of polymeric adhesives while maintaining refractive index contrast, proved difficult and degraded the film’s uniformity. A controlled evaporation method, using a mixed solvent suspension, represents the most promising method to produce high quality films over large areas, 75mm x 25mm. During this mixed solvent approach, the film is kept in the wet state longer, thus reducing cracks developing during the drying stage. These films are crack-free up to a critical thickness, and show very large domains, which are visible in low magnification SEM images as Moiré fringe patterns. Higher magnification reveals separation between alternate fringe patterns are domain boundaries between individual crystalline growth fronts.
Resumo:
Colloidal photonic crystals (PhCs) possess a periodic dielectric structure which gives rise to a photonic band gap (PBG) and offer great potential in the ability to modify or control light at visible wavelengths. Although the refractive index contrast between the void or infill and the matrix material is paramount for photonics applications, integration into real optoelectronics devices will require a range of added functionalities such as conductivity. As such, colloidal PhCs can be used as templates to direct infiltration of other functional materials using a range of deposition strategies. The work in this thesis seeks to address two challenges; first to develop a reproducible strategy based on Langmuir-Blodgett (LB) deposition to assemble high quality colloidal PhCs based on silica with precise film thickness as most other assembly methods suffer from a lack of reproducibility thickness control. The second is to investigate the use of LBdeposited colloidal PhCs as templates for infiltration with conducting metal oxide materials using vapor phase deposition techniques. Part of this work describes the synthesis and assembly of colloidal silica spheres with different surface chemical functionalities at the air-water interface in preparation for LB deposition. Modification of surface funtionality conferred varying levels of hydrophobicity upon the particles. The behaviour of silica monolayer films at the air-water interface was characterised by Brewster Angle Microscopy and surface pressure isotherms with a view to optimising the parameters for LB deposition of multilayer colloidal PhC films. Optical characterisation of LB-fabricated colloidal PhCs indicated high quality photonic behaviour, exhibiting a pseudo PBG with a sharp Bragg diffraction peak in the visible region and reflectance intensities greater than 60%. Finally the atomic layer deposition (ALD) of nominally undoped ZnO and aluminium “doped” ZnO (Al-doped ZnO) inside the pores of a colloidal PhC assembled by the LB technique was carried out. ALD growth in this study was performed using trimethyl aluminium (TMA) and water as precursors for the alumina and diethyl zinc (DEZn) and water for the ZnO. The ZnO:Al films were grown in a laminate mode, where DEZn pulses were substituted for TMA pulses in the sequences with a Zn:Al ratio 19:1. The ALD growth of ZnO and ZnO:Al in colloidal PhCs was shown to be highly conformal, tuneable and reproducible whilst maintaining excellent photonic character. Furthermore, at high levels of infiltration the opal composite films demonstrated significant conductivity.
Resumo:
The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.
Resumo:
Defects in commercial cheese result in a downgrading of the final cheese and a consequential economic loss to the cheese producer. Developments of defects in cheese are often not fully understood and therefore not controllable by the producer. This research investigated the underlying factors in the development of split and secondary fermentation defect and of pinking defects in commercial Irish cheeses. Split defect in Swiss-type cheese is a common defect associated with eye formation and manifests as slits and cracks visible in the cut cheese loaf (Reinbold, 1972; Daly et al., 2010). No consensus exists as to the definitive causes of the defect and possible factors which may contribute to the defect were reviewed. Models were derived to describe the relationship between moisture, pH, and salt levels and the distance from sample location to the closest external block surface during cheese ripening. Significant gradients within the cheese blocks were observed for all measured parameters in cheeses at 7 day post/after manufacture. No significant pH gradient was found within the blocks on exit from hot-room ripening and at three months post exit from the hot-room. Moisture content reached equilibrium within the blocks between exit from hot-room and 3 months after exit from hot-room while salt and salt-to-moisture levels had not reached equilibrium within the cheese blocks even at three months after exit from hot-room ripening. A characterisation of Swiss-type cheeses produced from a seasonal milk supply was undertaken. Cheeses were sampled on two days per month of the production year, at three different times during the manufacturing day, at internal and external regions of the cheese block and at four ripening time points (7 days post manufacture, post hot-room, 14 days post hot-room and 3 months in a cold room after exit from hot-room). Compositional, biochemical and microbial indices were determined, and the results were analysed as a splitplot with a factorial arrangement of treatments (season, time of day, area) on the main plot and ripening time on the sub-plot. Season (and interactions) had a significant effect on pH and salt-in-moisture levels (SM), mean viable counts of L. helveticus, propionic acid and non-starter lactic acid bacteria, levels of primary and secondary proteolysis and cheese firmness. Levels of proteolysis increased significantly during hot-room ripening but also during cold room storage, signifying continued development of cheese ripening during cold storage (> 8°C). Rheological parameters (e.g. springiness and cohesiveness) were significantly affected by interactions between ripening and location within cheese blocks. Time of day of manufacture significantly affected mean cheese calcium levels at 7 days post manufacture and mean levels of arginine and mean viable counts of NSLAB. Cheeses produced during the middle of the production day had the best grading scores and were more consistent compared to cheeses produced early or late during day of manufacture. Cheeses with low levels of S/M and low values of resilience were associated with poor grades at 7 days post manufacture. Chesses which had high elastic index values and low values of springiness in the external areas after exit from hot-room ripening also obtained good commercial grades. Development of a pink colour defect is an intermittent defect in ripened cheese which may or may not contain an added colourant, e.g., annatto. Factors associated with the defect were reviewed. Attempts at extraction and identification of the pink discolouration were unsuccessful. The pink colour partitioned with the water insoluble protein fraction. No significant difference was observed between ripened control and defect cheese for oxygen levels and redox potential or for the results of elemental analysis. A possible relationship between starter activity and defect development was established in cheeses with added coulourant, as lower levels of residual galactose and lactose were observed in defective cheese compared to control cheese free of the defect. Swiss-type cheese without added colourant had significantly higher levels of arginine and significantly lower lactate levels. Flow cell cytometry indicated that levels of bacterial cell viability and metabolic state differed between control and defect cheeses (without added colourant). Pyrosequencing analysis of cheese samples with and without the defect detected the previously unreported bacteria in cheese, Deinococcus thermus (a potential carotenoid producer). Defective Swiss-type cheeses had elevated levels of Deinococcus thermus compared to control cheeses, however the direct cause of pink was not linked to this bacterium alone. Overall, research was undertaken on underlying factors associated with the development of specific defects in commercial cheese, but also characterised the dynamic changes in key microbial and physicochemical parameters during cheese ripening and storage. This will enable the development of processing technologies to enable seasonal manipulation of manufacture protocols to minimise compositional and biochemical variability and to reduce and inhibit the occurrence of specific quality defects.
Resumo:
Photonic crystals (PhCs) influence the propagation of light by their periodic variation in dielectric contrast or refractive index. This review outlines the attractive optical qualities inherent to most PhCs namely the presence of full or partial photonic band gaps and the possibilities they present towards the inhibition of spontaneous emission and the localization of light. Colloidal self-assembly of polymer or silica spheres is one of the most favoured and low cost methods for the formation of PhCs as artificial opals. The state of the art in growth methods currently used for colloidal self-assembly are discussed and the use of these structures for the formation of inverse opal architectures is then presented. Inverse opal structures with their porous and interconnected architecture span several technological arenas - optics and optoelectronics, energy storage, communications, sensor and biological applications. This review presents several of these applications and an accessible overview of the physics of photonic crystal optics that may be useful for opal and inverse opal researchers in general, with a particular emphasis on the recent use of these three-dimensional porous structures in electrochemical energy storage technology. Progress towards all-optical integrated circuits may lie with the concepts of the photonic crystal, but the unique optical and structural properties of these materials and the convergence of PhC and energy storage disciplines may facilitate further developments and non-destructive optical analysis capabilities for (electro)chemical processes that occur within a wide variety of materials in energy storage research.