6 resultados para High Power Laser Beam

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is focused on the design and development of an integrated magnetic (IM) structure for use in high-power high-current power converters employed in renewable energy applications. These applications require low-cost, high efficiency and high-power density magnetic components and the use of IM structures can help achieve this goal. A novel CCTT-core split-winding integrated magnetic (CCTT IM) is presented in this thesis. This IM is optimized for use in high-power dc-dc converters. The CCTT IM design is an evolution of the traditional EE-core integrated magnetic (EE IM). The CCTT IM structure uses a split-winding configuration allowing for the reduction of external leakage inductance, which is a problem for many traditional IM designs, such as the EE IM. Magnetic poles are incorporated to help shape and contain the leakage flux within the core window. These magnetic poles have the added benefit of minimizing the winding power loss due to the airgap fringing flux as they shape the fringing flux away from the split-windings. A CCTT IM reluctance model is developed which uses fringing equations to accurately predict the most probable regions of fringing flux around the pole and winding sections of the device. This helps in the development of a more accurate model as it predicts the dc and ac inductance of the component. A CCTT IM design algorithm is developed which relies heavily on the reluctance model of the CCTT IM. The design algorithm is implemented using the mathematical software tool Mathematica. This algorithm is modular in structure and allows for the quick and easy design and prototyping of the CCTT IM. The algorithm allows for the investigation of the CCTT IM boxed volume with the variation of input current ripple, for different power ranges, magnetic materials and frequencies. A high-power 72 kW CCTT IM prototype is designed and developed for use in an automotive fuelcell-based drivetrain. The CCTT IM design algorithm is initially used to design the component while 3D and 2D finite element analysis (FEA) software is used to optimize the design. Low-cost and low-power loss ferrite 3C92 is used for its construction, and when combined with a low number of turns results in a very efficient design. A paper analysis is undertaken which compares the performance of the high-power CCTT IM design with that of two discrete inductors used in a two-phase (2L) interleaved converter. The 2L option consists of two discrete inductors constructed from high dc-bias material. Both topologies are designed for the same worst-case phase current ripple conditions and this ensures a like-for-like comparison. The comparison indicates that the total magnetic component boxed volume of both converters is similar while the CCTT IM has significantly lower power loss. Experimental results for the 72 kW, (155 V dc, 465 A dc input, 420 V dc output) prototype validate the CCTT IM concept where the component is shown to be 99.7 % efficient. The high-power experimental testing was conducted at General Motors advanced technology center in Torrence, Los Angeles. Calorific testing was used to determine the power loss in the CCTT IM component. Experimental 3.8 kW results and a 3.8 kW prototype compare and contrast the ferrite CCTT IM and high dc-bias 2L concepts over the typical operating range of a fuelcell under like-for-like conditions. The CCTT IM is shown to perform better than the 2L option over the entire power range. An 8 kW ferrite CCTT IM prototype is developed for use in photovoltaic (PV) applications. The CCTT IM is used in a boost pre-regulator as part of the PV power stage. The CCTT IM is compared with an industry standard 2L converter consisting of two discrete ferrite toroidal inductors. The magnetic components are compared for the same worst-case phase current ripple and the experimental testing is conducted over the operation of a PV panel. The prototype CCTT IM allows for a 50 % reduction in total boxed volume and mass in comparison to the baseline 2L option, while showing increased efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is focused on the investigation of magnetic materials for high-power dcdc converters in hybrid and fuel cell vehicles and the development of an optimized high-power inductor for a multi-phase converter. The thesis introduces the power system architectures for hybrid and fuel cell vehicles. The requirements for power electronic converters are established and the dc-dc converter topologies of interest are introduced. A compact and efficient inductor is critical to reduce the overall cost, weight and volume of the dc-dc converter and optimize vehicle driving range and traction power. Firstly, materials suitable for a gapped CC-core inductor are analyzed and investigated. A novel inductor-design algorithm is developed and automated in order to compare and contrast the various magnetic materials over a range of frequencies and ripple ratios. The algorithm is developed for foil-wound inductors with gapped CC-cores in the low (10 kHz) to medium (30 kHz) frequency range and investigates the materials in a natural-convection-cooled environment. The practical effects of frequency, ripple, air-gap fringing, and thermal configuration are investigated next for the iron-based amorphous metal and 6.5 % silicon steel materials. A 2.5 kW converter is built to verify the optimum material selection and thermal configuration over the frequency range and ripple ratios of interest. Inductor size can increase in both of these laminated materials due to increased airgap fringing losses. Distributing the airgap is demonstrated to reduce the inductor losses and size but has practical limitations for iron-based amorphous metal cores. The effects of the manufacturing process are shown to degrade the iron-based amorphous metal multi-cut core loss. The experimental results also suggest that gap loss is not a significant consideration in these experiments. The predicted losses by the equation developed by Reuben Lee and cited by Colonel McLyman are significantly higher than the experimental results suggest. Iron-based amorphous metal has better preformance than 6.5 % silicon steel when a single cut core and natural-convection-cooling are used. Conduction cooling, rather than natural convection, can result in the highest power density inductor. The cooling for these laminated materials is very dependent on the direction of the lamination and the component mounting. Experimental results are produced showing the effects of lamination direction on the cooling path. A significant temperature reduction is demonstrated for conduction cooling versus natural-convection cooling. Iron-based amorphous metal and 6.5% silicon steel are competitive materials when conduction cooled. A novel inductor design algorithm is developed for foil-wound inductors with gapped CC-cores for conduction cooling of core and copper. Again, conduction cooling, rather than natural convection, is shown to reduce the size and weight of the inductor. The weight of the 6.5 % silicon steel inductor is reduced by around a factor of ten compared to natural-convection cooling due to the high thermal conductivity of the material. The conduction cooling algorithm is used to develop high-power custom inductors for use in a high power multi-phase boost converter. Finally, a high power digitally-controlled multi-phase boost converter system is designed and constructed to test the high-power inductors. The performance of the inductors is compared to the predictions used in the design process and very good correlation is achieved. The thesis results have been documented at IEEE APEC, PESC and IAS conferences in 2007 and at the IEEE EPE conference in 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors report a chemical process to remove the native oxide on Ge and Bi2Se3 crystals, thus facilitating high-resolution electron beam lithography (EBL) on their surfaces using a hydrogen silsesquioxane (HSQ) resist. HSQ offers the highest resolution of all the commercially available EBL resists. However, aqueous HSQ developers such as NaOH and tetramethylammonium hydroxide have thus far prevented the fabrication of high-resolution structures via the direct application of HSQ to Ge and Bi2Se3, due to the solubility of components of their respective native oxides in these strong aqueous bases. Here we provide a route to the generation of ordered, high-resolution, high-density Ge and Bi2Se3 nanostructures with potential applications in microelectronics, thermoelectric, and photonics devices.                         

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is focused on the magnetic materials comparison and selection for high-power non-isolated dc-dc converters for industrial applications or electric, hybrid and fuel cell vehicles. The application of high-frequency bi-directional soft-switched dc-dc converters is also investigated. The thesis initially outlines the motivation for an energy-efficient transportation system with minimum environmental impact and reduced dependence on exhaustible resources. This is followed by a general overview of the power system architectures for electric, hybrid and fuel cell vehicles. The vehicle power sources and general dc-dc converter topologies are discussed. The dc-dc converter components are discussed with emphasis on recent semiconductor advances. A novel bi-directional soft-switched dc-dc converter with an auxiliary cell is introduced in this thesis. The soft-switching cell allows for the MOSFET's intrinsic body diode to operate in a half-bridge without reduced efficiency. The converter's mode-by-mode operation is analysed and closed-form expressions are presented for the average current gain of the converter. The design issues are presented and circuit limitations are discussed. Magnetic materials for the main dc-dc converter inductor are compared and contrasted. Novel magnetic material comparisons are introduced, which include the material dc bias capability and thermal conductivity. An inductor design algorithm is developed and used to compare the various magnetic materials for the application. The area-product analysis is presented for the minimum inductor size and highlights the optimum magnetic materials. Finally, the high-flux magnetic materials are experimentally compared. The practical effects of frequency, dc-bias, and converters duty-cycle effect for arbitrary shapes of flux density, air gap effects on core and winding, the winding shielding effect, and thermal configuration are investigated. The thesis results have been documented at IEEE EPE conference in 2007 and 2008, IEEE APEC in 2009 and 2010, and IEEE VPPC in 2010. A 2011 journal has been approved by IEEE Transactions on Power Electronics.