8 resultados para Heterotrophic bacteria in the Arctic
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Potato is the most important food crop after wheat and rice. A changing climate, coupled with a heightened consumer awareness of how food is produced and legislative changes governing the usage of agrochemicals, means that alternative more integrated and sustainable approaches are needed for crop management practices. Bioprospecting in the Central Andean Highlands resulted in the isolation and in vitro screening of 600 bacterial isolates. The best performing isolates, under in vitro conditions, were field trialled in their home countries. Six of the isolates, Pseudomonas sp. R41805 (Bolivia), Pseudomonas palleroniana R43631 (Peru), Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 (Ecuador), showed significant increase in the yield of potato. Using – omic technologies (i.e. volatilomic, transcriptomic, proteomic and metabolomic), the influence of microbial isolates on plant defence responses was determined. Volatile organic compounds of bacterial isolates were identified using GC/MS. RT-qPCR analysis revealed the significant expression of Ethylene Response Factor 3 (ERF3) and the results of this study suggest that the dual inoculation of potato with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 may play a part in the activation of plant defence system via ERF3. The proteomic analysis by 2-DE study has shown that priming by Pseudomonas sp. R41805 can induce the expression of proteins related to photosynthesis and protein folding in in vitro potato plantlets. The metabolomics study has shown that the total glycoalkaloid (TGA) content of greenhouse-grown potato tubers following inoculation with Pseudomonas sp. R41805 did not exceed the acceptable safety limit (200 mg kg-1 FW). As a result of this study, a number of bacteria have been identified with commercial potential that may offer sustainable alternatives in both Andean and European agricultural settings.
Resumo:
Fungal spoilage is the most common type of microbial spoilage in food leading to significant economical and health problems throughout the world. Fermentation by lactic acid bacteria (LAB) is one of the oldest and most economical methods of producing and preserving food. Thus, LAB can be seen as an interesting tool in the development of novel bio-preservatives for food industry. The overall objective of this study was to demonstrate, that LAB can be used as a natural way to improve the shelf-life and safety of a wide range of food products. In the first part of the thesis, 116 LAB isolates were screened for their antifungal activity against four Aspergillus and Penicillium spp. commonly found in food. Approximately 83% of them showed antifungal activity, but only 1% showed a broad range antifungal activity against all tested fungi. The second approach was to apply LAB antifungal strains in production of food products with extended shelf-life. L. reuteri R29 strain was identified as having strong antifungal activity in vitro, as well as in sourdough bread against Aspergillus niger, Fusarium culmorum and Penicillium expansum. The ability of the strain to produce bread of good quality was also determined using standard baking tests. Another strain, L. amylovorus DSM19280, was also identified as having strong antifungal activity in vitro and in vivo. The strain was used as an adjunct culture in a Cheddar cheese model system and demonstrated the inhibition of P. expansum. Significantly, its presence had no detectable negative impact on cheese quality as determined by analysis of moisture, salt, pH, and primary and secondary proteolysis. L. brevis PS1 a further strain identified during the screening as very antifungal, showed activity in vitro against common Fusarium spp. and was used in the production of a novel functional wortbased alcohol-free beverage. Challenge tests performed with F. culmorum confirmed the effectiveness of the antifungal strain in vivo. The shelf-life of the beverage was extended significantly when compared to not inoculated wort sample. A range of antifungal compounds were identified for the 4 LAB strains, namely L. reuteri ee1p, L. reuteri R29, L. brevis PS1 and L. amylovorous DSM20531. The identification of the compounds was based on liquid chromatography interfaced to the mass spectrometer and PDA detector
Resumo:
Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the beta- and gamma-proteobacteria. Many fliC genes were deduced to be under the control of sigma(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (<= 1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.
Resumo:
Crohn’s disease (CD) is a chronic, relapsing inflammatory condition affecting the gastrointestinal tract of humans, of which there is currently no cure. The precise etiology of CD is unknown, although it has become widely accepted that it is a multifactorial disease which occurs as a result of an abnormal immune response to commensal enteric bacteria in a genetically susceptible host. Recent studies have shown that a new group of Escherichia coli, called Adherent Invasive Escherichia coli (AIEC) are present in the guts of CD patients at a higher frequency than in healthy subjects, suggesting that they may play a role in the initiation and/or maintenance of the inflammation associated with CD. Two phenotypes define an AIEC and differentiate them from other groups of E. coli. Firstly, AIEC can adhere to and invade epithelial cells; and secondly, they can replicate in macrophages. In this study, we use a strain of AIEC which has been isolated from the colonic mucosa of a CD patient, called HM605, to examine the relationship between AIEC and the macrophage. We show, using a systematic mutational approach, that while the Tricarboxylic acid (TCA) cycle, the glyoxylate pathway, the Entner-Doudoroff (ED) pathway, the Pentose Phosphate (PP) pathway and gluconeogenesis are dispensable for the intramacrophagic growth of HM605, glycolysis is an absolute requirement for the ability of this organism to replicate intracellularly. We also show that HM605 activates the inflammasome, a major driver of inflammation in mammals. Specifically, we show that macrophages infected with HM605 produce significantly higher levels of the pro-inflammatory cytokine IL-1β than macrophages infected with a non-AIEC strain, and we show by immunoblotting that this is due to cleavage of caspase-1. We also show that macrophages infected with HM605 exhibit significantly higher levels of pyroptosis, a form of inflammatory cell death, than macrophages infected with a non-AIEC strain. Therefore, AIEC strains are more pro-inflammatory than non-AIEC strains and this may have important consequences in terms of CD pathology. Moreover, we show that while inflammasome activation by HM605 is independent of intracellular bacterial replication, it is dependent on an active bacterial metabolism. Through the establishment of a genetic screen aimed at identifying mutants which activate the inflammasome to lower levels than the wild-type, we confirm our observation that bacterial metabolism is essential for successful inflammasome activation by HM605 and we also uncover new systems/structures that may be important for inflammasome activation, such as the BasS/BasR two-component system, a type VI secretion system and a K1 capsule. Finally, in this study, we also identify a putative small RNA in AIEC strain LF82, which may be involved in modulating the motility of this strain. Overall this works shows that, in the absence of specialised virulence factors, the ability of AIEC to metabolise within the host cell may be a key determinant of its pathogenesis.
Resumo:
The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.
Resumo:
The global proportion of older persons is increasing rapidly. Diet and the intestinal microbiota independently and jointly contribute to health in the elderly. The habitual dietary patterns and functional microbiota components of elderly subjects were investigated in order to identify specific effector mechanisms. A study of the dietary intake of Irish community-dwelling elderly subjects showed that the consumption of foods high in fat and/or sugar was excessive, while consumption of dairy foods was inadequate. Elderly females typically had a more nutrient- dense diet than males and a considerable proportion of subjects, particularly males, had inadequate intakes of calcium, magnesium, vitamin D, folate, zinc and vitamin C. The association between dietary patterns, glycaemic index and cognitive function was also investigated. Elderly subjects consuming ‘prudent’ dietary patterns had better cognitive function compared to those consuming ‘Western’ dietary patterns. Furthermore, fully-adjusted regression models revealed that a high glycaemic diet was associated with poor cognitive function, demonstrating a new link between nutrition and cognition. An extensive screening study of the elderly faecal-derived microbiota was also undertaken to examine the prevalence of antimicrobial production by intestinal bacteria. A number of previously characterised bacteriocins were isolated (gassericin T, ABP-118, mutacin II, enterocin L-50 and enterocin P) in this study. Interestingly, a Lactobacillus crispatus strain was found to produce a potentially novel antimicrobial compound. Full genome sequencing of this strain revealed the presence of three loci which exhibited varying degrees of homology with the genes responsible for helveticin J production in Lb. helveticus. An additional study comparing the immunomodulatory capacity of ‘viable’ and ‘non-viable’ Bifidobacterium strains found that Bifidobacterium-fermented milks (BFMs) containing ‘non-viable’ cells could stimulate levels of IL-10 and TNF-α in a manner similar to those stimulated by BFMs containing ‘viable’ cells in vitro.
Resumo:
The overall aims of this study were to investigate the differences between raw/farm milk and pasteurised milk with respect to potential immune modifying effects following consumption and investigate the bacterial composition of raw milk compared to pasteurised milk. Furthermore, in this thesis, panels of potential probiotic bacteria from the Bifidobacterium and Lactobacillus genera were investigated. The overall bacterial composition of raw milk was compared with pasteurised milk using samples obtained from commercial milk producers around Ireland using next generation sequencing technology (454 pyrosequencing). Here the presence of previously unrecognised and diverse bacterial populations in unpasteurised cow’s milk was identified. Futhermore the bacterial content of pasteurised milk was found to be more diverse than previously thought. The global response of the adenocarcinoma cell line HT-29 to raw milk and pasteurised milk exposures were also characterised using whole genome microarray technology. Over one thousand differentially expressed genes were identified which were found to be involved in a plethora of cellular functions. Interestingly a reduction in immune related activity (e.g. Major histocompatability complex class II signalling and T and B cell proliferation) was identified in cells exposed to pasteurised milk compared with raw milk exposures. Further studies comparing human cell response to raw versus pasteurised milk was performed using peripheral blood mononuclear cells (PBMC) from healthy donors. A reduction in CD14 was identified following raw milk exposures compared with pasteurised milk and the pattern of cytokine production may indicate that gram positive bacteria in the raw milk were contributing to the differences in the cellular response to raw versus pasteurised milk. Panels of potentially probiotic bacteria (comprising of lactobacilli and bifidobacteria) were further assessed for immunomodulatory capabilities using cell culture based models. Gene expression and cytokine production were used to evaluate stimulated and unstimulated (LPS) cellular responses as well as interaction mechanisms
Resumo:
The global rise in antibiotic resistance is a significant problem facing healthcare professionals. In particular within the cystic fibrosis (CF) lung, bacteria can establish chronic infection and resistance to a wide array of antibiotic therapies. One of the principle pathogens associated with chronic infection in the CF lung is Pseudomonas aeruginosa. P. aeruginosa can establish chronic infection in the CF lung partly through the use of the biofilm mode of growth. This biofilm mode of growth offers a considerable degree of protection from a wide variety of challenges such as the host immune system or antibiotic therapy. The threat posed by the emergence of chronic pathogens is prompting the development of next generation antimicrobials. The biofilm mode of growth is often central to the establishment of chronic infection and the development of antibiotic resistance. Thus, targeting biofilm formation has emerged as one of the principle strategies for the development of next generation antimicrobials. In this thesis two separate approaches were used to identify potential anti - biofilm targets. The first strategy focused on the identification of novel genes with a role in a biofilm formation. High throughput screening identified almost 300 genes which had a role in biofilm formation. A number of these genes were characterised at a phenotypic and a molecular level. The second strategy focused on the identification of compounds capable of inhibiting biofilm formation. A collection of marine sponge isolated bacteria were screened for the ability to inhibit the central pathway regulating biofilm formation, quorum sensing. A number of distinct isolates were identified that had quorum sensing inhibition activity from which, a Pseudomonas isolate was selected for further characterisation. A specific compound capable of inhibiting quorum sensing was identified using chemical analytical technologies in the supernatant of this marine isolate.