2 resultados para Heavy metal enrichment
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This study selected six geographically-similar villages with traditional and alternative cultivation methods (two groups of three, one traditional and two alternatives) in two counties of Henan Province, China—a representative area of the Huang-huai-hai Plain representing traditional rural China. Soil heavy metal concentrations, floral and faunal biodiversity, and socio-economic data were recorded. Heavy metal concentrations of surface soils from three sites in each village were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS, chromium, nickel, copper, cadmium, and lead) and Atomic Absorption Spectrophotometer (AAS, zinc). The floral biodiversity of four land-use types was recorded following the Braun-Blanquet coverage-abundance method using 0.5×0.5m quadrats. The faunal biodiversity of two representative farmland plots was recorded using 0.3×0.3m quadrats at four 0.1m layers. The socio-economic data were recorded through face-to-face interviews of one hundred randomly selected households at each village. Results demonstrate different cultivation methods lead to different impact on above variables. Traditional cultivation led to lower heavy metal concentrations; both alternative managements were associated with massive agrochemical input causing heavy metal pollution in farmlands. Floral distribution was significantly affected by village factors. Diverse cultivation supported high floral biodiversity through multi-scale heterogeneous landscapes containing niches and habitats. Faunal distribution was also significantly affected by village factor nested within soil depth. Different faunal groups responded differently, with Acari being taxonomically diverse and Collembola high in densities. Increase in manual labour and crop number in villages using alternative cultivation may positively affect biodiversity. The results point to the conservation potential of diverse cultivation methods in traditional rural China and other regions under social and political reforms, where traditional agriculture is changing to unified, large-scale mechanized agriculture. This study serves as a baseline for conservation in small-holding agricultural areas of China, and points to the necessity of further studies at larger and longer scales.
Resumo:
In the last two decades, semiconductor nanocrystals have been the focus of intense research due to their size dependant optical and electrical properties. Much is now known about how to control their size, shape, composition and surface chemistry, allowing fine control of their photophysical and electronic properties. However, genuine concerns have been raised regarding the heavy metal content of these materials, which is toxic even at relatively low concentrations and may limit their wide scale use. These concerns have driven the development of heavy metal free alternatives. In recent years, germanium nanocrystals (Ge NCs) have emerged as environmentally friendlier alternatives to II-VI and IV-VI semiconductor materials as they are nontoxic, biocompatible and electrochemically stable. This thesis reports the synthesis and characterisation of Ge NCs and their application as fluorescence probes for the detection of metal ions. A room-temperature method for the synthesis of size monodisperse Ge NCs within inverse micelles is reported, with well-defined core diameters that may be tuned from 3.5 to 4.5 nm. The Ge NCs are chemically passivated with amine ligands, minimising surface oxidation while rendering the NCs dispersible in a range of polar solvents. Regulation of the Ge NCs size is achieved by variation of the ammonium salts used to form the micelles. A maximum quantum yield of 20% is shown for the nanocrystals, and a transition from primarily blue to green emission is observed as the NC diameter increases from 3.5 to 4.5 nm. A polydisperse sample with a mixed emission profile is prepared and separated by centrifugation into individual sized NCs which each showed blue and green emission only, with total suppression of other emission colours. A new, efficient one step synthesis of Ge NCs with in situ passivation and straightforward purification steps is also reported. Ge NCs are formed by co-reduction of a mixture of GeCl4 and n-butyltrichlorogermane; the latter is used both as a capping ligand and a germanium source. The surface-bound layer of butyl chains both chemically passivates and stabilises the Ge NCs. Optical spectroscopy confirmed that these NCs are in the strong quantum confinement regime, with significant involvement of surface species in exciton recombination processes. The PL QY is determined to be 37 %, one of the highest values reported for organically terminated Ge NCs. A synthetic method is developed to produce size monodisperse Ge NCs with modified surface chemistries bearing carboxylic acid, acetate, amine and epoxy functional groups. The effect of these different surface terminations on the optical properties of the NCs is also studied. Comparison of the emission properties of these Ge NCs showed that the wavelength position of the PL maxima could be moved from the UV to the blue/green by choice of the appropriate surface group. We also report the application of water-soluble Ge NCs as a fluorescent sensing platform for the fast, highly selective and sensitive detection of Fe3+ ions. The luminescence quenching mechanism is confirmed by lifetime and absorbance spectroscopies, while the applicability of this assay for detection of Fe3+ in real water samples is investigated and found to satisfy the US Environmental Protection Agency requirements for Fe3+ levels in drinkable water supplies.