2 resultados para Hardware and software
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This research has explored the relationship between system test complexity and tacit knowledge. It is proposed as part of this thesis, that the process of system testing (comprising of test planning, test development, test execution, test fault analysis, test measurement, and case management), is directly affected by both complexity associated with the system under test, and also by other sources of complexity, independent of the system under test, but related to the wider process of system testing. While a certain amount of knowledge related to the system under test is inherent, tacit in nature, and therefore difficult to make explicit, it has been found that a significant amount of knowledge relating to these other sources of complexity, can indeed be made explicit. While the importance of explicit knowledge has been reinforced by this research, there has been a lack of evidence to suggest that the availability of tacit knowledge to a test team is of any less importance to the process of system testing, when operating in a traditional software development environment. The sentiment was commonly expressed by participants, that even though a considerable amount of explicit knowledge relating to the system is freely available, that a good deal of knowledge relating to the system under test, which is demanded for effective system testing, is actually tacit in nature (approximately 60% of participants operating in a traditional development environment, and 60% of participants operating in an agile development environment, expressed similar sentiments). To cater for the availability of tacit knowledge relating to the system under test, and indeed, both explicit and tacit knowledge required by system testing in general, an appropriate knowledge management structure needs to be in place. This would appear to be required, irrespective of the employed development methodology.
Resumo:
Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.