3 resultados para HOST CONTROL
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2, which is probably orchestrated by a number of membrane stress proteins and involves D-alanylation of membrane lipoteichoic acids, restoration of the physiological proton motive force disrupted following bacteriophage infection, and energy conservation. Sequencing of the eight plasmids of L. lactis subsp. cremoris DPC3758 from raw milk cheese revealed three anti-phage restriction/modification (R/M) systems, immunity/resistance to nisin, lacticin 481, cadmium and copper, and six conjugative/mobilization regions. A food-grade derivative strain with enhanced bacteriophage resistance was generated via stacking of R/M plasmids. Sequencing and functional analysis of the four plasmids of L. lactis subsp. lactis biovar. diacetylactis DPC3901 from raw milk cheese revealed genes novel to Lactococcus and typical of bacteria associated with plants, in addition to genes associated with plant-derived lactococcal strains. The functionality of a novel high-affinity regulated system for cobalt uptake was demonstrated. The bacteriophage resistant and bacteriocin-producing plasmid pMRC01 places a metabolic burden on lactococcal hosts resulting in lowered growth rates and increased cell permeability and autolysis. The magnitude of these effects is strain dependent but not related to bacteriocin production. Starters’ acidification capacity is not significantly affected. Transcriptomic analyses showed that pMRC01 abortive infection (Abi) system is probably subjected to a complex regulatory control by Rgg-like ORF51 and CopG-like ORF58 proteins. These regulators are suggested to modulate the activity of the putative Abi effectors ORF50 and ORF49 exhibiting topology and functional similarities to the Rex system aborting bacteriophage λ lytic growth.
Resumo:
New compensation methods are presented that can greatly reduce the slit errors (i.e. transition location errors) and interval errors induced due to non-idealities in optical incremental encoders (square-wave). An M/T-type, constant sample-time digital tachometer (CSDT) is selected for measuring the velocity of the sensor drives. Using this data, three encoder compensation techniques (two pseudoinverse based methods and an iterative method) are presented that improve velocity measurement accuracy. The methods do not require precise knowledge of shaft velocity. During the initial learning stage of the compensation algorithm (possibly performed in-situ), slit errors/interval errors are calculated through pseudoinversebased solutions of simple approximate linear equations, which can provide fast solutions, or an iterative method that requires very little memory storage. Subsequent operation of the motion system utilizes adjusted slit positions for more accurate velocity calculation. In the theoretical analysis of the compensation of encoder errors, encoder error sources such as random electrical noise and error in estimated reference velocity are considered. Initially, the proposed learning compensation techniques are validated by implementing the algorithms in MATLAB software, showing a 95% to 99% improvement in velocity measurement. However, it is also observed that the efficiency of the algorithm decreases with the higher presence of non-repetitive random noise and/or with the errors in reference velocity calculations. The performance improvement in velocity measurement is also demonstrated experimentally using motor-drive systems, each of which includes a field-programmable gate array (FPGA) for CSDT counting/timing purposes, and a digital-signal-processor (DSP). Results from open-loop velocity measurement and closed-loop servocontrol applications, on three optical incremental square-wave encoders and two motor drives, are compiled. While implementing these algorithms experimentally on different drives (with and without a flywheel) and on encoders of different resolutions, slit error reductions of 60% to 86% are obtained (typically approximately 80%).
Resumo:
Aquaculture is a fast-growing industry contributing to global food security and sustainable aquaculture, which may reduce pressures on capture fisheries. The overall objective of this thesis was to look at the immunostimulatory effects of different aspects of aquaculture on the host response of the edible sea urchin, Paracentrotus lividus, which are a prized delicacy (roe) in many Asian and Mediterranean countries. In Chapter 1, the importance of understanding the biology, ecology, and physiology of P. lividus, as well as the current status in the culture of this organism for mass production and introducing the thesis objectives for following chapters is discussed. As the research commenced, the difficulties of identifying individuals for repeat sampling became clear; therefore, Chapter 2 was a tagging experiment that indicated PIT tagging was a successful way of identifying individual sea urchins over time with a high tag retention rate. However, it was also found that repeat sampling via syringe to measure host response of an individual caused stress which masked results and thus animals would be sampled and sacrificed going forward. Additionally, from personal observations and discussion with peers, it was suggested to look at the effect that diet has on sea urchin immune function and the parameters I measured which led to Chapter 3. In this chapter, both Laminaria digitata and Mytilus edulis were shown to influence measured immune parameters of differential cell counts, nitric oxide production, and lysozyme activity. Therefore, trials commencing after Trial 5 in Chapter 4, were modified to include starvation in order to remove any effect of diet. Another important aspect of culturing any organism is the study of their immune function and its response to several immunostimulatory agents (Chapter 4). Zymosan A was shown to be an effective immunostimulatory agent in P. lividus. Further work on handled/stored animals (Chapter 5) showed Zymosan A reduced the measured levels of some immune parameters measured relative to the control, which may reduce the amount of stress in the animals. In Chapter 6, animals were infected with Vibrio anguillarum and, although V. anguillarum, impacted immune parameters of P. lividus, it did not cause mortality as predicted. Lastly, throughout this thesis work, it was noted that the immune parameters measured produced different values at different times of the year (Chapter 7); therefore, using collated baseline (control) data, results were compiled to observe seasonal effects. It was determined that both seasonality and sourcing sites influenced immune parameter measurements taken at different times throughout the year. In conclusion, this thesis work fits into the framework of development of aquaculture practices that affect immune function of the host and future research focusing on the edible sea urchin, P. lividus.