3 resultados para Group Processes
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis describes the optimisation of chemoenzymatic methods in asymmetric synthesis. Modern synthetic organic chemistry has experienced an enormous growth in biocatalytic methodologies; enzymatic transformations and whole cell bioconversions have become generally accepted synthetic tools for asymmetric synthesis. Biocatalysts are exceptional catalysts, combining broad substrate scope with high regio-, enantio- and chemoselectivities enabling the resolution of organic substrates with superb efficiency and selectivity. In this study three biocatalytic applications in enantioselective synthesis were explored and perhaps the most significant outcome of this work is the excellent enantioselectivity achieved through optimisation of reaction conditions improving the synthetic utility of the biotransformations. In the first chapter a summary of literature discussing the stereochemical control of baker’s yeast (Saccharomyces Cerevisae) mediated reduction of ketones by the introduction of sulfur moieties is presented, and sets the work of Chapter 2 in context. The focus of the second chapter was the synthesis and biocatalytic resolution of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone. For the first time the practical limitations of this resolution have been addressed providing synthetically useful quantities of enantiopure synthons for application in the total synthesis of both enantiomers of 4-methyloctanoic acid, the aggregation pheromone of the rhinoceros beetles of the genus Oryctes. The unique aspect of this enantioselective synthesis was the overall regio- and enantioselective introduction of the methyl group to the octanoic acid chain. This work is part of an ongoing research programme in our group focussed on baker’s yeast mediated kinetic resolution of 2-keto sulfones. The third chapter describes hydrolase-catalysed kinetic resolutions leading to a series of 3-aryl alkanoic acids. Hydrolysis of the ethyl esters with a series of hydrolases was undertaken to identify biocatalysts that yield the corresponding acids in highly enantioenriched form. Contrary to literature reports where a complete disappearance of efficiency and, accordingly enantioselection, was described upon kinetic resolution of sterically demanding 3-arylalkanoic acids, the highest reported enantiopurities of these acids was achieved (up to >98% ee) in this study through optimisation of reaction conditions. Steric and electronic effects on the efficiency and enantioselectivity of the biocatalytic transformation were also explored. Furthermore, a novel approach to determine the absolute stereochemistry of the enantiopure 3-aryl alkanoic acids was investigated through combination of co-crystallisation and X-ray diffraction linked with chiral HPLC analysis. The fourth chapter was focused on the development of a biocatalytic protocol for the asymmetric Henry reaction. Efficient kinetic resolution in hydrolase-mediated transesterification of cis- and trans- β-nitrocyclohexanol derivatives was achieved. Combination of a base-catalysed intramolecular Henry reaction coupled with the hydrolase-mediated kinetic resolution with the view to selective acetylation of a single stereoisomer was investigated. While dynamic kinetic resolution in the intramolecular Henry was not achieved, significant progress in each of the individual elements was made and significantly the feasibility of this process has been demonstrated. The final chapter contains the full experimental details, including spectroscopic and analytical data of all compounds synthesised in this project, while details of chiral HPLC analysis are included in the appendix. The data for the crystal structures are contained in the attached CD.
Resumo:
Phages belonging to the 936 group represent one of the most prevalent and frequently isolated phages in dairy fermentation processes using Lactococcus lactis as the primary starter culture. In recent years extensive research has been carried out to characterise this phage group at a genomic level in an effort to understand how the 936 group phages dominate this particular niche and cause regular problems during large scale milk fermentations. This thesis describes a large scale screening of industrial whey samples, leading to the isolation of forty three genetically different lactococcal phages. Using multiplex PCR, all phages were identified as members of the 936 group. The complete genome of thirty eight of these phages was determined using next generation sequencing technologies which identified several regions of divergence. These included the structural region surrounding the major tail protein, the replication region as well as the genes involved in phage DNA packing. For a number of phages the latter genomic region was found to harbour genes encoding putative orphan methyltransferases. Using small molecule real time (SMRT) sequencing and heterologous gene expression, the target motifs for several of these MTases were determined and subsequently shown to actively protect phage DNA from restriction endonuclease activity. Comparative analysis of the thirty eight phages with fifty two previously sequenced members of this group showed that the core genome consists of 28 genes, while the non-core genome was found to fluctuate irrespective of geographical location or time of isolation. This study highlights the continued need to perform large scale characterisation of the bacteriophage populations infecting industrial fermentation facilities in effort to further our understanding dairy phages and ways to control their proliferation.
Resumo:
Background: Diagnostic decision-making is made through a combination of Systems 1 (intuition or pattern-recognition) and Systems 2 (analytic) thinking. The purpose of this study was to use the Cognitive Reflection Test (CRT) to evaluate and compare the level of Systems 1 and 2 thinking among medical students in pre-clinical and clinical programs. Methods: The CRT is a three-question test designed to measure the ability of respondents to activate metacognitive processes and switch to System 2 (analytic) thinking where System 1 (intuitive) thinking would lead them astray. Each CRT question has a correct analytical (System 2) answer and an incorrect intuitive (System 1) answer. A group of medical students in Years 2 & 3 (pre-clinical) and Years 4 (in clinical practice) of a 5-year medical degree were studied. Results: Ten percent (13/128) of students had the intuitive answers to the three questions (suggesting they generally relied on System 1 thinking) while almost half (44%) answered all three correctly (indicating full analytical, System 2 thinking). Only 3-13% had incorrect answers (i.e. that were neither the analytical nor the intuitive responses). Non-native English speaking students (n = 11) had a lower mean number of correct answers compared to native English speakers (n = 117: 1.0 s 2.12 respectfully: p < 0.01). As students progressed through questions 1 to 3, the percentage of correct System 2 answers increased and the percentage of intuitive answers decreased in both the pre-clinical and clinical students. Conclusions: Up to half of the medical students demonstrated full or partial reliance on System 1 (intuitive) thinking in response to these analytical questions. While their CRT performance has no claims to make as to their future expertise as clinicians, the test may be used in helping students to understand the importance of awareness and regulation of their thinking processes in clinical practice.