3 resultados para Greer, Curtis

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular tunnel junctions involve studying the behaviour of a single molecule sandwiched between metal leads. When a molecule makes contact with electrodes, it becomes open to the environment which can heavily influence its properties, such as electronegativity and electron transport. While the most common computational approaches remain to be single particle approximations, in this thesis it is shown that a more explicit treatment of electron interactions can be required. By studying an open atomic chain junction, it is found that including electron correlations corrects the strong lead-molecule interaction seen by the ΔSCF approximation, and has an impact on junction I − V properties. The need for an accurate description of electronegativity is highlighted by studying a correlated model of hexatriene-di-thiol with a systematically varied correlation parameter and comparing the results to various electronic structure treatments. The results indicating an overestimation of the band gap and underestimation of charge transfer in the Hartree-Fock regime is equivalent to not treating electron-electron correlations. While in the opposite limit, over-compensating for electron-electron interaction leads to underestimated band gap and too high an electron current as seen in DFT/LDA treatment. It is emphasised in this thesis that correcting electronegativity is equivalent to maximising the overlap of the approximate density matrix to the exact reduced density matrix found at the exact many-body solution. In this work, the complex absorbing potential (CAP) formalism which allows for the inclusion metal electrodes into explicit wavefunction many-body formalisms is further developed. The CAP methodology is applied to study the electron state lifetimes and shifts as the junction is made open.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are hollow tubes of sp2-hybridised carbon with diameters of the order of nanometres. Due to their unique physical properties, which include ballistic transport and high mechanical strength, they are of significant interest for technological applications. The electronic properties of CNTs are of particular interest for use as gas sensors, interconnect materials in the semi-conductor industry and as the channel material in CNT based field effect transistors. The primary difficulty associated with the use of CNTs in electronic applications is the inability to control electronic properties at the growth stage; as grown CNTs consist of a mixture of metallic and semi-conducting CNTs. Doping has the potential to solve this problem and is a focus of this thesis. Nitrogen-doped CNTs typically have defective structures; the usual hollow CNT structure is replaced by a series of compartments. Through density functional theory (DFT) calculations and experimental results, we propose an explanation for the defective structures obtained, based on the stronger binding of N to the growth catalyst in comparison to C. In real electronic devices, CNTs need to be contacted to metal, we generate the current-voltage (IV) characteristics of metal-contacted CNTs considering both the effect of dopants and the structure of the interface region on electronic properties. We find that substitutionally doped CNTs produce Ohmic contacts and that scattering at the interface is strongly influenced by structure. In addition, we consider the effect of the common vacancy defects on the electronic properties of large diameter CNTs. Defects increase scattering in the CNT, with the greatest scattering occurring for the largest defect (555777). We validate the independent scattering approximation for small diameter CNTs, which enables mean free paths in large diameter CNTs to be calculated, with a smaller mean free paths found for larger defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD thesis concerns the computational modeling of the electronic and atomic structure of point defects in technologically relevant materials. Identifying the atomistic origin of defects observed in the electrical characteristics of electronic devices has been a long-term goal of first-principles methods. First principles simulations are performed in this thesis, consisting of density functional theory (DFT) supplemented with many body perturbation theory (MBPT) methods, of native defects in bulk and slab models of In0.53Ga0.47As. The latter consist of (100) - oriented surfaces passivated with A12O3. Our results indicate that the experimentally extracted midgap interface state density (Dit) peaks are not the result of defects directly at the semiconductor/oxide interface, but originate from defects in a more bulk-like chemical environment. This conclusion is reached by considering the energy of charge transition levels for defects at the interface as a function of distance from the oxide. Our work provides insight into the types of defects responsible for the observed departure from ideal electrical behaviour in III-V metal-oxidesemiconductor (MOS) capacitors. In addition, the formation energetics and electron scattering properties of point defects in carbon nanotubes (CNTs) are studied using DFT in conjunction with Green’s function based techniques. The latter are applied to evaluate the low-temperature, low-bias Landauer conductance spectrum from which mesoscopic transport properties such as the elastic mean free path and localization length of technologically relevant CNT sizes can be estimated from computationally tractable CNT models. Our calculations show that at CNT diameters pertinent to interconnect applications, the 555777 divacancy defect results in increased scattering and hence higher electrical resistance for electron transport near the Fermi level.