7 resultados para Gram negative bacteria
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Chitosan gel films were successfully obtained by evaporation cast from chitosan solutions in aqueous acidic solutions of organic acids (lactic and acetic acid) as gel film bandages, with a range of additives that directly influence film morphology and porosity. We show that the structure and composition of a wide range of 128 thin gel films, is correlated to the antimicrobial properties, their biocompatibility and resistance to biodegradation. Infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy was used to correlate film molecular structure and composition to good antimicrobial properties against 10 of the most prevalent Gram positive and Gram negative bacteria. Chitosan gel films reduce the number of colonies after 24 h of incubation by factors of ∼105–107 CFU/mL, compared with controls. For each of these films, the structure and preparation condition has a direct relationship to antimicrobial activity and effectiveness. These gel film bandages also show excellent stability against biodegradation with lysozyme under physiological conditions (5% weight loss over a period of 1 month, 2% in the first week), allowing use during the entire healing process. These chitosan thin films and subsequent derivatives hold potential as low-cost, dissolvable bandages, or second skin, with antimicrobial properties that prohibit the most relevant intrahospital bacteria that infest burn injuries.
Resumo:
The second messenger c-di-GMP is implicated in regulation of various aspects of the lifestyles and virulence of Gram-negative bacteria. Cyclic di-GMP is formed by diguanylate cyclases with a GGDEF domain and degraded by phosphodiesterases with either an EAL or HD-GYP domain. Proteins with tandem GGDEF-EAL domains occur in many bacteria, where they may be involved in c-di-GMP turnover or act as enzymatically-inactive c-di-GMP effectors. Here, we report a systematic study of the regulatory action of the eleven GGDEF-EAL proteins in Xanthomonas oryzae pv. oryzicola, an important rice pathogen causing bacterial leaf streak. Mutational analysis revealed that XOC_2335 and XOC_2393 positively regulate bacterial swimming motility, while XOC_2102, XOC_2393 and XOC_4190 negatively control sliding motility. The ΔXOC_2335/XOC_2393 mutant that had a higher intracellular c-di-GMP level than the wild type and the ΔXOC_4190 mutant exhibited reduced virulence to rice after pressure inoculation. In vitro purified XOC_4190 and XOC_2102 have little or no diguanylate cyclase or phosphodiesterase activity, which is consistent with unaltered c-di-GMP concentration in ΔXOC_4190. Nevertheless, both proteins can bind to c-di-GMP with high affinity, indicating a potential role as c-di-GMP effectors. Overall our findings advance understanding of c-di-GMP signaling and its links to virulence in an important rice pathogen.
Molecular analysis of virulence mechanisms associated with adherent-invasive Escherichia coli (AIEC)
Resumo:
Crohn's Disease (CD) is a chronic inflammatory bowel disease of unknown etiology. Recent work has shown that a new pathotype of Escherichia coli, Adherent Invasive E. coli (AIEC) may be associated with CD. AIEC has been shown to adhere to and invade epithelial cells and to replicate within macrophages (together this is called the AIEC phenotype). In this thesis, the AIEC phenotype of 84 E. coli strains were determined in order to identify the prevalence of this phenotype within the E. coli genus. This study showed that a significant proportion of E. coli strains (approx. 5%) are capable of adhering to and invading epithelial cells and undergoing intramacrophage replication. Moreover, the results presented in this study indicate a correlation between survival in macrophage and resistance to grazing by amoeba supporting the coincidental evolution hypothesis that resistance to amoebae could be a driving force in the evolution of pathogenicity in some bacteria, such as AIEC. In addition, this study has identified an important regulatory role for the CpxA/R two component system (TCS) in the invasive abilities of AIEC HM605, a colonic mucosa-associated CD isolate. A mutation in cpxR was shown to be defective in the invasion of epithelial cells and this defect was shown to be independent of motility or the expression of Type 1 fimbriae, factors that have been shown to be involved in the invasion of another strain of AIEC, isolated from a patient with ileal CD, called LF82. The CpxA/R TCS responds to disturbances in the cell envelope and has been implicated in the virulence of a number of Gram negative pathogens. In this study it is shown that the CpxA/R TCS regulates the expression of a potentially novel invasin called SinH. SinH is found in a number of invasive strains of E. coli and Salmonella. Moreover work presented here shows that a critical mechanism underpinning AIEC persistence in macrophages is the repair of DNA bases damaged by macrophage oxidants. Together these findings provide evidence to suggest that AIEC are a diverse group of E. coli and possess diverse molecular mechanisms and virulence factors that contribute to the AIEC phenotype. In addition, AIEC may have gone through different evolutionary histories acquiring various molecular mechanisms ultimately culminating in the AIEC phenotype. The gastrointestinal (GI) tract harbors a diverse microbiota; most are symbiotic or commensal however some bacteria have the potential to cause disease (pathobiont). The work presented here provides evidence to support the model that AIEC are pathobionts. AIEC strains can be carried as commensals in healthy guts however, when the intestinal homeostasis is disrupted, such as in the compromised gut of CD patients, AIEC may behave as opportunistic pathogens and cause and/or contribute to disease by driving intestinal inflammation.
Resumo:
Cronobacter spp. are opportunistic pathogens which can be isolated from a wide variety of foods and environments. They are Gram negative, motile, non-spore forming, peritrichous rods of the Enterobacteriaceae family. This food-borne pathogen is associated with the ingestion of contaminated infant milk formula (IMF), causing necrotizing enterocolitis, sepsis and meningitis in neonatal infants. The work presented in this thesis involved the investigation and characterisation of a bank of Cronobacter strains for their ability to tolerate physiologically relevant stress conditions that are commonly encountered in the gastrointestinal tract. While all strains were able to endure the suboptimal conditions tested, noteworthy variations were observed between strains. A collection of these strains were Lux-tagged to determine if their growth could be tracked in IMF by measuring bioluminescence. The resulting strains could be easily and reproducibly monitored in real time by measuring light emission. Following this a transposon mutagenesis library was created in one of the Lux-tagged strains of Cronobacter sakazakii. This library was screened for mutants with affected growth in milk. The majority of mutants identified were associated with amino acid metabolism. The final section of this thesis identified genes involved in the tolerance of C. sakazakii to the milk derived antimicrobial peptide, Lactoferricin B (Lfcin B). This was achieved by creating a transposon mutagenesis library in C. sakazakii and screening for mutants with increased susceptibility to Lfcin B. Overall this thesis demonstrates the variation between Cronobacter strains. It also identifies genes required for growth of the bacteria in milk, as well as genes needed for antimicrobial peptide tolerance.
Resumo:
The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.
Resumo:
The overall aims of this study were to investigate the differences between raw/farm milk and pasteurised milk with respect to potential immune modifying effects following consumption and investigate the bacterial composition of raw milk compared to pasteurised milk. Furthermore, in this thesis, panels of potential probiotic bacteria from the Bifidobacterium and Lactobacillus genera were investigated. The overall bacterial composition of raw milk was compared with pasteurised milk using samples obtained from commercial milk producers around Ireland using next generation sequencing technology (454 pyrosequencing). Here the presence of previously unrecognised and diverse bacterial populations in unpasteurised cow’s milk was identified. Futhermore the bacterial content of pasteurised milk was found to be more diverse than previously thought. The global response of the adenocarcinoma cell line HT-29 to raw milk and pasteurised milk exposures were also characterised using whole genome microarray technology. Over one thousand differentially expressed genes were identified which were found to be involved in a plethora of cellular functions. Interestingly a reduction in immune related activity (e.g. Major histocompatability complex class II signalling and T and B cell proliferation) was identified in cells exposed to pasteurised milk compared with raw milk exposures. Further studies comparing human cell response to raw versus pasteurised milk was performed using peripheral blood mononuclear cells (PBMC) from healthy donors. A reduction in CD14 was identified following raw milk exposures compared with pasteurised milk and the pattern of cytokine production may indicate that gram positive bacteria in the raw milk were contributing to the differences in the cellular response to raw versus pasteurised milk. Panels of potentially probiotic bacteria (comprising of lactobacilli and bifidobacteria) were further assessed for immunomodulatory capabilities using cell culture based models. Gene expression and cytokine production were used to evaluate stimulated and unstimulated (LPS) cellular responses as well as interaction mechanisms
Resumo:
Due to the increasing incidence of antibiotic resistant strains, the use of novel antimicrobials, such as bacteriocins, has become an ever more likely prospect. Lacticin 3147 (of which there are two components, Ltnα and Ltnβ) and nisin belong to the subgroup of bacteriocins called the lantibiotics, which has attracted much attention in recent years. The lantibiotics are antimicrobial peptides that contain unusual amino acids resulting from a series of enzyme-mediated post translational modifications. Given that there have been relatively few examples of lantibiotic-specific resistance; these antimicrobials appear to represent valid alternatives to classical antibiotics. However, the fact that lantibiotics are naturally only produced in small amounts often hinders their commercialisation. In order to overcome this bottleneck, several approaches can be employed. For example, we can create a situation that reduces the quantity of a lantibiotic required to inhibit a target by combining it with other antimicrobials. Here, following an initial screen involving lacticin 3147 and several classical antibiotics, it was observed between lacticin 3147 and the commercial antibiotics polymyxin B/E function synergistically. This reduced the amounts of the individual antimicrobials required for kill and broadened the spectrum of inhibition of both agents. Upon combination with polymyxins, lacticin 3147, which has been associated with Gram positive targets only, actively targeted Gram negative species such as Escherichia coli and Cronobacter sp. An alternative means of addressing problems associated with lantibiotic yield is to better understand how production is regulated, and ultimately use this information to enhance peptide levels. With this in mind the regulation of lacticin 3147 production from the promoter Pbac was investigated using a green fluorescent protein (GFP) expression reporter system. This revealed that elements within both of the divergent operons of the lacticin 3147 gene cluster are involved in Pbac regulation. That is, LtnR, already established as a negative regulator of itself and the lacticin 3147 associated immunity genes, also acts as an activator of Pbac transcription. In contrast, an enhanced level of expression is observed in the absence of the lacticin 3147 structural genes, ltnA1 and ltnA2, indicating that these genes/gene products are involved in Pbac repression. In fact, through complementation of the ltnA2 gene, it was revealed that this regulation is more likely to be dependent on the presence of the gene transcript rather that the corresponding prepropeptide or modified Ltnβ. It may be that if lacticin 3147 production is successfully enhanced, the ability of the producing cell to protect itself may become an issue. To prepare for such a possibility a bioengineered derivative of the lacticin 3147 immunity protein LtnI (LtnI I81V) which provides enhanced protection was discovered through an in depth investigation involving the site and saturation mutagenesis of this protein. In addition, the creation of truncated forms of LtnI allowed the identification of important and essential regions of this immunity protein. Finally, as mentioned, self-immunity is essential to prevent self-killing. However the discovery of nisin U immunity and regulatory gene homologues (spiFEGRR’K) within the pathogenic strain S. infantarius subsp. infantarius is a cause for concern as it represents an example of immune mimicry, a form of lantibiotic-specific resistance. The ability of spiFEG to confer protection was apparent when they successfully provided protection to nisin A, F, Z, Q and U when expressed heterologously in the nisin sensitive L. lactis HP host. As a consequence of the studies presented in this thesis, it is likely that strategies will emerge that will facilitate the production of greater levels of lacticin 3147 production and lead to enhanced immunity in lactococcal backgrounds. Alternatively the need for enhanced production could be avoided through the use of antimicrobial combinations. In addition, providing awareness of the threats of the emergence of resistance through immune mimicry can allow researchers to develop strategies to prevent this phenomenon from leading to the dissemination of lantibiotic resistance.