3 resultados para Girl Guides
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This PhD thesis investigates the application of hollow core photonic crystal fibre for use as an optical fibre nano litre liquid sensor. The use of hollow core photonic crystal fibre for optical fibre sensing is influenced by the vast wealth of knowledge, and years of research that has been conducted for optical waveguides. Hollow core photonic crystal fibres have the potential for use as a simple, rapid and continuous sensor for a wide range of applications. In this thesis, the velocity of a liquid flowing through the core of the fibre (driven by capillary forces) is used for the determination of the viscosity of a liquid. The structure of the hollow core photonic crystal fibre is harnessed to collect Raman scatter from the sample liquid. These two methods are integrated to investigate the range of applications the hollow core photonic crystal fibre can be utilised for as an optical liquid sensor. Understanding the guidance properties of hollow core photonic crystal fibre is forefront in dynamically monitoring the liquid filling. When liquid is inserted fully or selectively to the capillaries, the propagation properties change from photonic bandgap guidance when empty, to index guidance when the core only is filled and finally to a shifted photonic bandgap effect, when the capillaries are fully filled. The alterations to the guidance are exploited for all viscosity and Raman scattering measurements. The concept of the optical fibre viscosity sensor was tested for a wide range of samples, from aqueous solutions of propan-1-ol to solutions of mono-saccharides in phosphate buffer saline. The samples chosen to test the concept were selected after careful consideration of the importance of the liquid in medical and industrial applications. The Raman scattering of a wide range of biological important fluids, such as creatinine, glucose and lactate were investigated, some for the first time with hollow core photonic crystal fibre.
Resumo:
A model for understanding the formation and propagation of modes in curved optical waveguides is developed. A numerical method for the calculation of curved waveguide mode profiles and propagation constants in two dimensional waveguides is developed, implemented and tested. A numerical method for the analysis of propagation of modes in three dimensional curved optical waveguides is developed, implemented and tested. A technique for the design of curved waveguides with reduced transition loss is presented. A scheme for drawing these new waveguides and ensuring that they have constant width is also provided. Claims about the waveguide design technique are substantiated through numerical simulations.
Resumo:
Cytokine-driven signalling shapes immune homeostasis and guides inflammatory responses mainly through induction of specific gene expression programmes both within and outside the immune cell compartment. These transcriptional outputs are often amplified via cytokine synergy, which sets a stimulatory threshold that safeguards from exacerbated inflammation and immunopathology. In this study, we investigated the molecular mechanisms underpinning synergy between two pivotal Th1 cytokines, IFN-γ and TNF-α, in human intestinal epithelial cells. These two proinflammatory mediators induce a unique state of signalling and transcriptional synergy implicated in processes such as antiviral and antitumour immunity, intestinal barrier and pancreatic β-cell dysfunction. Since its discovery more than 30 years ago, this biological phenomenon remains, however, only partially defined. Here, using a functional genomics approach including RNAi perturbation screens and small-molecule inhibitors, we identified two new regulators of IFN-γ/TNF-α-induced chemokine and antiviral gene and protein expression, a Bcl-2 protein BCL-G and a histone demethylase UTX. We also discovered that IFN-γ/TNF-α synergise to trigger a coordinated shutdown of major receptor tyrosine kinases expression in colon cancer cells. Together, these findings extend our current understanding of how IFN-γ/TNF-α synergy elicits qualitatively and quantitatively distinct outputs in the intestinal epithelium. Given the well-documented role of this synergistic state in immunopathology of various disorders, our results may help to inform the identification of high quality and biologically relevant druggable targets for diseases characterised by an IFN-γ/TNF-α high immune signature