6 resultados para Ghrelin, GHRL, growth hormone secretagogue receptor, GHSR, gene, non-coding RNA, ncRNA, natural antisense transcript, cis-NAT, alternative splicing, splice variant, GHRLOS, GHSR-OS, genome, orthologue, comparative genomics

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut-hormone, ghrelin, activates the centrally expressed growth hormone secretagogue 1a (GHS-R1a) receptor, or ghrelin receptor. The ghrelin receptor is a G-protein coupled receptor (GPCR) expressed in several brain regions, including the arcuate nucleus (Arc), lateral hypothalamus (LH), ventral tegmental area (VTA), nucleus accumbens (NAcc) and amygdala. Activation of the GHS-R1a mediates a multitude of biological activities, including release of growth hormone and food intake. The ghrelin signalling system also plays a key role in the hedonic aspects of food intake and activates the dopaminergic mesolimbic circuit involved in reward signalling. Recently, ghrelin has been shown to be involved in mediating a stress response and to mediate stress-induced food reward behaviour via its interaction with the HPA-axis at the level of the anterior pituitary. Here, we focus on the role of the GHS-R1a receptor in reward behaviour, including the motivation to eat, its anxiogenic effects, and its role in impulsive behaviour. We investigate the functional selectivity and pharmacology of GHS-R1a receptor ligands as well as crosstalk of the GHS-R1a receptor with the serotonin 2C (5-HT2C) receptor, which represent another major target in the regulation of eating behaviour, stress-sensitivity and impulse control disorders. We demonstrate, to our knowledge for the first time, the direct impact of GHS-R1a signalling on impulsive responding in a 2-choice serial reaction time task (2CSRTT) and show a role for the 5-HT2C receptor in modulating amphetamine-associated impulsive action. Finally, we investigate differential gene expression patterns in the mesocorticolimbic pathway, specifically in the NAcc and PFC, between innate low- and high-impulsive rats. Together, these findings are poised to have important implications in the development of novel treatment strategies to combat eating disorders, including obesity and binge eating disorders as well as impulse control disorders, including, substance abuse and addiction, attention deficit hyperactivity disorder (ADHD) and mood disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pregnancy-Specific Glycoproteins (PSG) are the most abundant fetally expressed proteins in the maternal bloodstream at term. This multigene family are immunoglobulin superfamily members and are predominantly expressed in the syncytiotrophoblast of human placenta and in giant cells and spongiotrophoblast of rodent placenta. PSGs are encoded by seventeen genes in the mouse and ten genes in the human. Little is known about the function of this gene family, although they have been implicated in immune modulation and angiogenesis through the induction of cytokines such as IL-10 and TGFβ1 in monocytes, and more recently, have been shown to inhibit the platelet-fibrinogen interaction. I provide new information concerning the evolution of the murine Psg genomic locus structure and organisation, through the discovery of a recent gene inversion event of Psg22 within the major murine Psg cluster. In addition to this, I have performed an examination of the expression patterns of individual Psg genes in placental and non-placental tissues. This study centres on Psg22, which is the most abundant murine Psg transcript detected in the first half of pregnancy. A novel alternative splice variant transcript of Psg22 lacking the protein N1-domain was discovered, and similar to the full length isoform induces TGFβ1 in macrophage and monocytic cell lines. The identification of a bidirectional antisense long non-coding RNA transcript directly adjacent to Psg22 and its associated active local chromatin conformation, suggests an interesting epigenetic gene-specific regulatory mechanism that may be responsible for the high level of Psg22 expression relative to the other Psg family members upon trophoblast giant cell differentiation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxic ischaemic encephalopathy (HIE) is a devastating neonatal condition which affects 2-3 per 1000 infants annually. The current gold standard of treatment - induced hypothermia, has the ability to reduce neonatal mortality and improve neonatal morbidity. However, to be effective it needs to be initiated within the therapeutic window which exists following initial insult until approximately 6 hours after birth. Current methods of assessment which are relied upon to identify infants with HIE are subjective and unreliable. To overcome this issue, an early and reliable biomarker of HIE severity must be identified. MicroRNA (miRNA) are a class of small non-coding RNA molecules which have potential as biomarkers of disease state and potential therapeutic targets. These tiny molecules can modulate gene expression by inhibiting translation of messenger RNA (mRNA) and as a result, can regulate protein synthesis. These miRNA are understood to be released into the circulation during cellular stress, where they are highly stable and relatively easy to quantify. Therefore, these miRNAs may be ideal candidates for biomarkers of HIE severity and may aid in directing the clinical management of these infants. By using both transcriptomic and proteomic approaches to analyse the expression of miRNAs and their potential targets in the umbilical cord blood, I have confirmed that infants with perinatal asphyxia and HIE have a significantly different UCB miRNA signature compared to UCB samples from healthy controls. Finally, I have identified and investigated 2 individual miRNAs; both of which show some potential as classifiers of HIE severity and predictors of long term outcome, particularly when coupled with their downstream targets. While this work will need to be validated and expanded in a new and larger cohort of infants, it suggests the potential of miRNA as biomarkers of neonatal pathological conditions such as HIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Insulin-like Growth Factor 1 Receptor (IGF-1R) has an essential function in normal cell growth and in cancer progression. However, anti-IGF-1R therapies have mostly been withdrawn from clinical trials owing to a lack of efficacy and predictive biomarkers. IGF-1R activity and signalling in cancer cells is regulated by its C-terminal tail, and in particular, by a motif that encompasses tyrosines 1250 and 1251 flanked by serines 1248 and 1252 (1248- SFYYS-1252). Mutation of Y1250/1251 greatly reduces IGF-1-promoted cell migration, interaction with the scaffolding protein RACK1 in the context Integrin signalling, and IGF- 1R kinase activity. Here we investigated the phosphorylation of the SFYYS motif and characterise the conditions under which this motif may be phosphorylated under. As phosphorylated residues, the SFYYS motif may also serve to recruit interacting proteins to the IGF-1R. To this end we identified a novel IGF-1R interacting partner which requires phosphorylated residues in the SFYYS motif to interact with the IGF-1R. This interaction was found to be IGF-1-dependent, and required the scaffold protein RACK1. The interaction of this binding protein with the IGF-1R likely functions to promote maximal phosphorylation of Shc and ERK in IGF-1-stimulated cell migration, and may be important for IGF-1 signalling in cancer cells. Lastly, we have investigated possible kinases that may confer resistance or sensitivity to the IGF-1R kinase inhibitor BMS-754807. In this screen we identified ATR as a mediator of resistance and showed that suppression or chemical inhibition of ATR synergised with BMS-754807 to reduce colony formation. This work has contributes to our understanding of IGF-1R kinase regulation and signalling and suggests that administration of anti-IGF-1R drugs with ATR inhibitors may have therapeutic benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is one of the most common cancers diagnosed in men. Whilst treatments for early-stage disease are largely effective, current therapies for metastatic prostate cancer, particularly for bone metastasis, offer only a few months increased lifespan at best. Hence new treatments are urgently required. Small interfering RNA (siRNA) has been investigated for the treatment of prostate cancer where it can ‘silence’ specific cancer-related genes. However the clinical application of siRNA-based gene therapy is limited due to the absence of an optimised gene delivery vector. The optimisation of such gene delivery vectors is routinely undertaken in vitro using 2D cell culture on plastic dishes which does not accurately simulate the in vivo bone cancer metastasis microenvironment. The goal of this thesis was to assess the potential of two different targeted delivery vectors (gold or modified β-cyclodextrin derivatives) to facilitate siRNA receptor-mediated uptake into prostate cancer cells. Furthermore, this project aimed to develop a more physiologically relevant 3D in vitro cell culture model, to mimic prostate cancer bone metastasis, which is suitable for evaluating the delivery of nanoparticulate gene therapeutics. In the first instance, cationic derivatives of gold and β-cyclodextrin were synthesized to complex anionic siRNA. The delivery vectors were targeted to prostate cancer cells using the anisamide ligand which has high affinity for the sigma receptor that is overexpressed by prostate cancer cells. The gold nanoparticle demonstrated high levels of uptake into prostate cancer PC3 cells and efficient gene silencing when transfection was performed in serum-free media. However, due to the absence of a poly(ethylene glycol) (PEG) stabilising group, the formulation was unsuitable for use in serum-containing conditions. Conversely, the modified β-cyclodextrin formulation demonstrated enhanced stability in the presence of serum due to the inclusion of a PEG chain onto which the anisamide ligand was conjugated. However, the maximum level of gene silencing efficacy from three different prostate cancer cell lines (DU145, VCaP and PC3 cells) was 30 %, suggesting that further optimisation of the formulation would be required prior to application in vivo. In order to develop a more physiologically-relevant in vitro model of prostate cancer bone metastasis, prostate cancer cells (PC3 and LNCaP cells) were cultured in 3D on collagenbased scaffolds engineered to mimic the bone microenvironment. While the model was suitable for assessing nanoparticle-mediated gene knockdown, prostate cancer cells demonstrated a phenotype with lower invasive potential when grown on the scaffolds relative to standard 2D cell culture. Hence, prostate cancer cells (PC3 and LNCaP cells) were subsequently co-cultured with bone osteoblast cells (hFOB 1.19 cells) to enhance the physiological relevance of the model. Co-cultures secreted elevated levels of the MMP9 enzyme, a marker of prostate cancer metastasis, relative to prostate cancer cell monocultures (2D and 3D) indicating enhanced physiological relevance of the model. Furthermore, the coculture model proved suitable for investigating nanoparticle-mediated gene silencing. In conclusion, the work outlined in this thesis identified two different sigma receptor-targeted gene delivery vectors with potential for the treatment of prostate cancer. In addition, a more physiologically relevant model of prostate cancer bone metastasis was developed with the capacity to help optimise gene delivery vectors for the treatment of prostate cancer.