3 resultados para Genetic group

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phages belonging to the 936 group represent one of the most prevalent and frequently isolated phages in dairy fermentation processes using Lactococcus lactis as the primary starter culture. In recent years extensive research has been carried out to characterise this phage group at a genomic level in an effort to understand how the 936 group phages dominate this particular niche and cause regular problems during large scale milk fermentations. This thesis describes a large scale screening of industrial whey samples, leading to the isolation of forty three genetically different lactococcal phages. Using multiplex PCR, all phages were identified as members of the 936 group. The complete genome of thirty eight of these phages was determined using next generation sequencing technologies which identified several regions of divergence. These included the structural region surrounding the major tail protein, the replication region as well as the genes involved in phage DNA packing. For a number of phages the latter genomic region was found to harbour genes encoding putative orphan methyltransferases. Using small molecule real time (SMRT) sequencing and heterologous gene expression, the target motifs for several of these MTases were determined and subsequently shown to actively protect phage DNA from restriction endonuclease activity. Comparative analysis of the thirty eight phages with fifty two previously sequenced members of this group showed that the core genome consists of 28 genes, while the non-core genome was found to fluctuate irrespective of geographical location or time of isolation. This study highlights the continued need to perform large scale characterisation of the bacteriophage populations infecting industrial fermentation facilities in effort to further our understanding dairy phages and ways to control their proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteriophages, viruses infecting bacteria, are uniformly present in any location where there are high numbers of bacteria, both in the external environment and the human body. Knowledge of their diversity is limited by the difficulty to culture the host species and by the lack of the universal marker gene present in all viruses. Metagenomics is a powerful tool that can be used to analyse viral communities in their natural environments. The aim of this study was to investigate diverse populations of uncultured viruses from clinical (a sputum of patient with cystic fibrosis, CF) and environmental samples (a sludge from a dairy food wastewater treatment plant) containing rich bacterial populations using genetic and metagenomic analyses. Metagenomic sequencing of viruses obtained from these samples revealed that the majority of the metagenomic reads (97-99%) were novel when compared to the NCBI protein database using BLAST. A large proportion of assembled contigs were assignable as novel phages or uncharacterised prophages, the next largest assignable group being single-stranded eukaryotic virus genomes. Sputum from a cystic fibrosis patient contained DNA typical of phages of bacteria that are traditionally involved in CF lung infections and other bacteria that are part of the normal oral flora. The only eukaryotic virus detected in the CF sputum was Torque Teno virus (TTV). A substantial number of assigned sequences from dairy wastewater could be affiliated with phages of bacteria that are typically found in the soil and aquatic environments, including wastewater. Eukaryotic viral sequences were dominated by plant pathogens from the Geminiviridae and Nanoviridae families, and animal pathogens from the Circoviridae family. Antibiotic resistance genes were detected in both metagenomes suggesting phages could be a source for transmissible antimicrobial resistance. Overall, diversity of viruses in the CF sputum was low, with 89 distinct viral genotypes predicted, and higher (409 genotypes) in the wastewater. Function-based screening of a metagenomic library constructed from DNA extracted from dairy food wastewater viruses revealed candidate promoter sequences that have ability to drive expression of GFP in a promoter-trap vector in Escherichia coli. The majority of the cloned DNA sequences selected by the assay were related to ssDNA circular eukaryotic viruses and phages which formed a minority of the metagenome assembly, and many lacked any significant homology to known database sequences. Natural diversity of bacteriophages in wastewater samples was also examined by PCR amplification of the major capsid protein sequences, conserved within T4-type bacteriophages from Myoviridae family. Phylogenetic analysis of capsid sequences revealed that dairy wastewater contained mainly diverse and uncharacterized phages, while some showed a high level of similarity with phages from geographically distant environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human gut is host to a diversity of microorganisms including the single-celled microbial eukaryote Blastocystis. Although Blastocystis has a global distribution, there is dearth of information relating to its prevalence and diversity in many human populations. The mode of Blastocystis transmission to humans is also insufficiently characterised, however, it is speculated to vary between different populations. Here we investigated the incidence and genetic diversity of Blastocystis in a US population and also the possibility of Blastocystis human-human transmission between healthy individuals using family units (N = 50) living in Boulder, Colorado as our sample-set. Ten of the 139 (~ 7%) individuals in our dataset were positive for Blastocystis, nine of whom were adults and one individual belonging to the children/adolescents group. All positive cases were present in different family units. A number of different Blastocystis subtypes (species) were detected with no evidence of mixed infections. The prevalence of Blastocystis in this subset of the US population is comparatively low relative to other industrialised populations investigated to date; however, subtype diversity was largely consistent with that previously reported in studies of European populations. The distribution of Blastocystis within family units indicates that human-human transmission is unlikely to have occurred within families that participated in this study. It is not unexpected that given the world-wide variation in human living conditions and lifestyles between different populations, both the prevalence of Blastocystis and its mode of transmission to humans may vary considerably.