4 resultados para Gene Delivery
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Gene therapy has emerged as a realistic prospect for the treatment of cancer due to its potential for selective tumour cell targeting. The greatest challenge gene delivery vectors face is the ability to safely and efficiently deliver genes into target cells. The overall objectives of this thesis are to evaluate the efficacy of various gene delivery methods in a clinically relevant tumour model and to also investigate potential strategies for tumour selective delivery. We began with the development of a tumour slice model system using patient waste tissue. This model involves the use of fresh human tumour tissue, cut into thin slices and maintained ex vivo and is universally applicable to gene delivery methods, using a real-time luminescence detection method to assess gene delivery. The nature of the ex vivo culture system permitted examination of specific physiological variables, the influence of intratumoural factors and tissue specific effects on vector expression. Adenoviral vectors under the control of the human CXCR4 promoter demonstrated a 'tumour on' and 'normal off' expression profile when compared with the ubiquitously active CMV promoter when tested in patient tumour tissue. In addition, we developed an ex vivo system of changing oxygenation using the hypoxia inducer, cobalt, to mimic the transient hypoxic conditions found in solid tumours. We found that Adenoviral transgene expression was robust in the cycling hypoxic conditions relevant to solid tumours and re-oxygenation of chronically hypoxic tissue enhanced transgene expression. Finally, we demonstrated an AAV-based tumour targeting strategy using a tumour-selective promoter allowing for the efficient targeting of AAV vectors to cancer cells and the sparing of normal tissue in both murine metastatic liver tumours models and patient tissue. The thesis highlights the importance of indepth preclinical assessment of novel therapeutics and may serve as a platform for further testing of novel gene delivery approaches.
Resumo:
Prostate cancer is one of the most common cancers diagnosed in men. Whilst treatments for early-stage disease are largely effective, current therapies for metastatic prostate cancer, particularly for bone metastasis, offer only a few months increased lifespan at best. Hence new treatments are urgently required. Small interfering RNA (siRNA) has been investigated for the treatment of prostate cancer where it can ‘silence’ specific cancer-related genes. However the clinical application of siRNA-based gene therapy is limited due to the absence of an optimised gene delivery vector. The optimisation of such gene delivery vectors is routinely undertaken in vitro using 2D cell culture on plastic dishes which does not accurately simulate the in vivo bone cancer metastasis microenvironment. The goal of this thesis was to assess the potential of two different targeted delivery vectors (gold or modified β-cyclodextrin derivatives) to facilitate siRNA receptor-mediated uptake into prostate cancer cells. Furthermore, this project aimed to develop a more physiologically relevant 3D in vitro cell culture model, to mimic prostate cancer bone metastasis, which is suitable for evaluating the delivery of nanoparticulate gene therapeutics. In the first instance, cationic derivatives of gold and β-cyclodextrin were synthesized to complex anionic siRNA. The delivery vectors were targeted to prostate cancer cells using the anisamide ligand which has high affinity for the sigma receptor that is overexpressed by prostate cancer cells. The gold nanoparticle demonstrated high levels of uptake into prostate cancer PC3 cells and efficient gene silencing when transfection was performed in serum-free media. However, due to the absence of a poly(ethylene glycol) (PEG) stabilising group, the formulation was unsuitable for use in serum-containing conditions. Conversely, the modified β-cyclodextrin formulation demonstrated enhanced stability in the presence of serum due to the inclusion of a PEG chain onto which the anisamide ligand was conjugated. However, the maximum level of gene silencing efficacy from three different prostate cancer cell lines (DU145, VCaP and PC3 cells) was 30 %, suggesting that further optimisation of the formulation would be required prior to application in vivo. In order to develop a more physiologically-relevant in vitro model of prostate cancer bone metastasis, prostate cancer cells (PC3 and LNCaP cells) were cultured in 3D on collagenbased scaffolds engineered to mimic the bone microenvironment. While the model was suitable for assessing nanoparticle-mediated gene knockdown, prostate cancer cells demonstrated a phenotype with lower invasive potential when grown on the scaffolds relative to standard 2D cell culture. Hence, prostate cancer cells (PC3 and LNCaP cells) were subsequently co-cultured with bone osteoblast cells (hFOB 1.19 cells) to enhance the physiological relevance of the model. Co-cultures secreted elevated levels of the MMP9 enzyme, a marker of prostate cancer metastasis, relative to prostate cancer cell monocultures (2D and 3D) indicating enhanced physiological relevance of the model. Furthermore, the coculture model proved suitable for investigating nanoparticle-mediated gene silencing. In conclusion, the work outlined in this thesis identified two different sigma receptor-targeted gene delivery vectors with potential for the treatment of prostate cancer. In addition, a more physiologically relevant model of prostate cancer bone metastasis was developed with the capacity to help optimise gene delivery vectors for the treatment of prostate cancer.
Resumo:
Cancer represents a leading of cause of death in the developed world, inflicting tremendous suffering and plundering billions from health budgets. The traditional treatment approaches of surgery, radiotherapy and chemotherapy have achieved little in terms of cure for this deadly disease. Instead, life is prolonged for many, with dubious quality of life, only for disease to reappear with the inevitable fatal outcome. “Blue sky” thinking is required to tackle this disease and improve outcomes. The realisation and acceptance of the intrinsic role of the immune system in cancer pathogenesis, pathophysiology and treatment represented such a “blue sky” thought. Moreover, the embracement of immunotherapy, the concept of targeting immune cells rather than the tumour cells themselves, represents a paradigm shift in the approach to cancer therapy. The harnessing of immunotherapy demands radical and innovative therapeutic endeavours – endeavours such as gene and cell therapies and RNA interference, which two decades ago existed as mere concepts. This thesis straddles the frontiers of fundamental tumour immunobiology and novel therapeutic discovery, design and delivery. The work undertaken focused on two distinct immune cell populations known to undermine the immune response to cancer – suppressive T cells and macrophages. Novel RNAi mediators were designed, validated and incorporated into clinically relevant gene therapy vectors – involving a traditional lentiviral vector approach, and a novel bacterial vector strategy. Chapter 2 deals with the design of novel RNAi mediators against FOXP3 – a crucial regulator of the immunosuppressive regulatory T cell population. Two mediators were tested and validated. The superior mediator was taken forward as part of work in chapter 3. Chapter 3 deals with transposing the RNA sequence from chapter 2 into a DNA-based construct and subsequent incorporation into a lentiviral-based vector system. The lentiviral vector was shown to mediate gene delivery in vitro and functional RNAi was achieved against FOXP3. Proof of gene delivery was further confirmed in vivo in tumour-bearing animals. Chapter 4 focuses on a different immune cell population – tumour-associated macrophages. Non-invasive bacteria were explored as a specific means of delivering gene therapy to this phagocytic cell type. Proof of delivery was shown in vitro and in vivo. Moreover, in vivo delivery of a gene by this method achieved the desired immune response in terms of cytokine profile. Overall, the data presented here advance exploration within the field of cancer immunotherapy, introduce novel delivery and therapeutic strategies, and demonstrate pre-clinically the potential for such novel anti-cancer therapies.
Resumo:
Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a mutant Huntingtin (muHTT) protein. Therefore, preventing the expression of muHTT by harnessing the specificity of the RNA interference (RNAi) pathway is a key research avenue for developing novel therapies for HD. However, the biggest caveat in the RNAi approach is the delivery of short interfering RNA (siRNAs) to neurons, which are notoriously difficult to transfect. Indeed, despite the great advances in the field of nanotechnology, there remains a great need to develop more effective and less toxic carriers for siRNA delivery to the Central Nervous System (CNS). Thus, the aim of this thesis was to investigate the utility of modified amphiphilic β-cyclodextrins (CDs), oligosaccharide-based molecules, as non-viral vectors for siRNA delivery for HD. Modified CDs were able to bind and complex siRNAs forming nanoparticles capable of delivering siRNAs to ST14A-HTT120Q cells and to human HD fibroblasts, and reducing the expression of the HTT gene in these in vitro models of HD. Moreover, direct administration of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene expression knockdown and selective alleviation of rotarod motor deficits in this mouse model of HD. In contrast to widely used transfection reagents, CD.siRNA nanoparticles only induced limited cytotoxic and neuroinflammatory responses in multiple brain-derived cell-lines, and also in vivo after single direct injections into the mouse brain. Alternatively, we have also described a PEGylation-based formulation approach to further stabilise CD.siRNA nanoparticles and progress towards a systemic delivery nanosystem. Resulting PEGylated CD.siRNA nanoparticles showed increased stability in physiological saltconditions and, to some extent, reduced protein-induced aggregation. Taken together, the work outlined in this thesis identifies modified CDs as effective, safe and versatile siRNA delivery systems that hold great potential for the treatment of CNS disorders, such as HD.