5 resultados para GABA A
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δt = 0.31-0.33 h-1], viscosity [0.49 Pa-s], water holding capacity [72–73%], and chemical composition [moisture (87–88%), protein (5.05–5.65%), fat (0.12–0.15%), sugar (4.8–5.8%), and ash (0.74–1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid.
Resumo:
The overall objective of this thesis was to gain further insight into the mechanisms underlying commensal microbial influences on intestinal ion transport. In this regard, I examined the impact of commensal host-microbe interactions on colonic secretomotor function in mouse. I first examined the influence of two different probiotic (microorganisms which, when given in adequate amounts, can confer health benefits upon the host) strains, Bifidobacterium infantis 35624 and L. salivarius UCC118 on active colonic ion transport in the mouse, using the Ussing Chamber. I found that both probiotics appear to have converging effects on ion transport at a functional level. However, L. salivarius UCC118 may preferentially inhibit neurally-evoked ion transport. Next I examined the impact of the host microbiota itself on both baseline and stimulated colonic secretomotor function as well as probiotic induced changes in ion transport. I provide further evidence that the microbiota is capable of mediating alterations in colonic ion transport, and specifically suggests that it can influence cAMP-mediated responses. Finally, it has been well documented that many probiotics elicit their effects via secreted bioactives, therefore, I studied the effects of microbially produced GABA, contained in supernatants from the commensal microbe Lactobacillus brevis DPC6108, on colonic secretomotor function. In conclusion, I believe that commensal microbes have an important and strain specific functional influence on colonic ion transport and secretomotor function and these effects can be mediated via extracellular bioactives. Moreover, I believe that functional ex-vivo studies such as those carried out in this thesis have a critical role to play in our future understanding of host-microbe interactions in the gut.
Resumo:
The amygdala is a limbic structure that is involved in many of our emotions and processing of these emotions such as fear, anger and pleasure. Conditions such as anxiety, autism, and also epilepsy, have been linked to abnormal functioning of the amygdala, owing to improper neurodevelopment or damage. This thesis investigated the cellular and molecular changes in the amygdala in models of temporal lobe epilepsy (TLE) and maternal immune activation (MIA). The kainic acid (KA) model of temporal lobe epilepsy (TLE) was used to induce Ammon’s-horn sclerosis (AHS) and to investigate behavioural and cytoarchitectural changes that occur in the amygdala related to Neuropeptide Y1 receptor expression. Results showed that KA-injected animals showed increased anxiety-like behaviours and displayed histopathological hallmarks of AHS including CA1 ablation, granule cell dispersion, volume reduction and astrogliosis. Amygdalar volume and neuronal loss was observed in the ipsilateral nuclei which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsi- and contralateral granule cell layer of the dentate gyrus and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. The results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and tight regulation and appropriate control of GABA is vital for neurochemical homeostasis. GABA transporter-1 (GAT-1) is abundantly expressed by neurones and astrocytes and plays a key role in GABA reuptake and regulation. Imbalance in GABA homeostasis has been implicated in epilepsy with GAT-1 being an attractive pharmacological target. Electron microscopy was used to examine the distribution, expression and morphology of GAT-1 expressing structures in the amygdala of the TLE model. Results suggest that GAT-1 was preferentially expressed on putative axon terminals over astrocytic processes in this TLE model. Myelin integrity was examined and results suggested that in the TLE model myelinated fibres were damaged in comparison to controls. Synaptic morphology was studied and results suggested that asymmetric (excitatory) synapses occurred more frequently than symmetric (inhibitory) synapses in the TLE model in comparison to controls. This study illustrated that the amygdala undergoes ultrastructural alterations in this TLE model. Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism, schizophrenia and also epilepsy. MIA was induced at a critical window of amygdalar development at E12 using bacterial mimetic lipopolysaccharide (LPS). Results showed that MIA activates cytokine, toll-like receptor and chemokine expression in the fetal brain that is prolonged in the postnatal amygdala. Inflammation elicited by MIA may prime the fetal brain for alterations seen in the glial environment and this in turn have deleterious effects on neuronal populations as seen in the amygdala at P14. These findings may suggest that MIA induced during amygdalar development may predispose offspring to amygdalar related disorders such as heightened anxiety, fear impairment and also neurodevelopmental disorders.
Resumo:
The adult intestinal microbiota comprises a microbial ecosystem of approximately 100 trillion microorganisms, with specific bacterial communities holding distinct metabolic capabilities. Bacteria produce a range of bioactive compounds to survive unfavourable stimuli and to interact with other organisms, and generate several bioactive products during degradation of dietary constituents the host is not capable of digesting. This thesis addressed the impact of feeding potential probiotic bacteria and other dietary strategies such as pure fatty acids and prebiotics, on gut microbiota composition, short chain fatty acid (SCFA) production and modulation of metabolism in animal models. In the first experimental chapter (Chapter 2) a gas chromatography method for the quantification of SCFA was optimized and applied in the analysis of caecal samples obtained in animal studies described in other chapters of this thesis. In Chapter 3, t10, c12 CLA supplementation was shown to significantly alter murine gut microbiota composition and SCFA production rather than no supplementation. These changes were suggested to be extra factors affecting host lipid metabolism. Chapter 4 described the contrasting effects of CLA-producing strains, Bifidobacterium breve DPC 6330 and B. breve NCIMB 702258, on murine fat distribution/composition and gut microbiota composition, suggesting that these changes were most likely strain-dependent. In Chapter 5, dietary GABA-producing strain Lactobacillus brevis DPC 6108 was shown to significantly increase (p<0.05) serum insulin in healthy rats, leading to a second experiment using a type 1 diabetes rat model. Lb. brevis DPC 6108 administration did not change insulin levels in diabetic rats, but attenuated high levels of glucose when compared to diabetic control. However, an auto-immune-induced diabetes model was suggested as a better model to study GABA-related effects on diabetes. In Chapter 6 bovine milk oligosaccharides, 6’sialyllactose and Beneo Orafti P95 oligofructose supplementations were associated with depletion or reduction of less favourable bacteria, demonstrating that ingestion of these oligosaccharides might be a safe and effective approach to modulate populations of the intestinal microbiota. In Chapter 7 (General discussion) the major findings of all studies were reviewed and discussed.
Resumo:
Background: Preclinical studies have identified certain probiotics as psychobiotics a live microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) has been shown to reduce stress-related behaviour, corticosterone release and alter central expression of GABA receptors in an anxious mouse strain. However, it is unclear if this single putative psychobiotic strain has psychotropic activity in humans. Consequently, we aimed to examine if these promising preclinical findings could be translated to healthy human volunteers. Objectives: To determine the impact of L. rhamnosus on stress-related behaviours, physiology, inflammatory response, cognitive performance and brain activity patterns in healthy male participants. An 8 week, randomized, placebo-controlled, cross-over design was employed. Twenty-nine healthy male volunteers participated. Participants completed self-report stress measures, cognitive assessments and resting electroencephalography (EEG). Plasma IL10, IL1β, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR-4) agonist-induced cytokine release were determined by multiplex ELISA. Salivary cortisol was determined by ELISA and subjective stress measures were assessed before, during and after a socially evaluated cold pressor test (SECPT). Results: There was no overall effect of probiotic treatment on measures of mood, anxiety, stress or sleep quality and no significant effect of probiotic over placebo on subjective stress measures, or the HPA response to the SECPT. Visuospatial memory performance, attention switching, rapid visual information processing, emotion recognition and associated EEG measures did not show improvement over placebo. No significant anti-inflammatory effects were seen as assessed by basal and stimulated cytokine levels. Conclusions: L. rhamnosus was not superior to placebo in modifying stress-related measures, HPA response, inflammation or cognitive performance in healthy male participants. These findings highlight the challenges associated with moving promising preclinical studies, conducted in an anxious mouse strain, to healthy human participants. Future interventional studies investigating the effect of this psychobiotic in populations with stress-related disorders are required.