3 resultados para Fundamentals in linear algebra

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The case for energy policy modelling is strong in Ireland, where stringent EU climate targets are projected to be overshot by 2015. Policy targets aiming to deliver greenhouse gas and renewable energy targets have been made, but it is unclear what savings are to be achieved and from which sectors. Concurrently, the growth of personal mobility has caused an astonishing increase in CO2 emissions from private cars in Ireland, a 37% rise between 2000 and 2008, and while there have been improvements in the efficiency of car technology, there was no decrease in the energy intensity of the car fleet in the same period. This thesis increases the capacity for evidenced-based policymaking in Ireland by developing techno-economic transport energy models and using them to analyse historical trends and to project possible future scenarios. A central focus of this thesis is to understand the effect of the car fleet‘s evolving technical characteristics on energy demand. A car stock model is developed to analyse this question from three angles: Firstly, analysis of car registration and activity data between 2000 and 2008 examines the trends which brought about the surge in energy demand. Secondly, the car stock is modelled into the future and is used to populate a baseline “no new policy” scenario, looking at the impact of recent (2008-2011) policy and purchasing developments on projected energy demand and emissions. Thirdly, a range of technology efficiency, fuel switching and behavioural scenarios are developed up to 2025 in order to indicate the emissions abatement and renewable energy penetration potential from alternative policy packages. In particular, an ambitious car fleet electrification target for Ireland is examined. The car stock model‘s functionality is extended by linking it with other models: LEAP-Ireland, a bottom-up energy demand model for all energy sectors in the country; Irish TIMES, a linear optimisation energy system model; and COPERT, a pollution model. The methodology is also adapted to analyse trends in freight energy demand in a similar way. Finally, this thesis addresses the gap in the representation of travel behaviour in linear energy systems models. A novel methodology is developed and case studies for Ireland and California are presented using the TIMES model. Transport Energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.