2 resultados para Friction and percolation
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6–3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (–200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1–8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2–8.2 nm, 26–30 GPa, 0.3–0.4 and 2.1–4.8 × 10−6 mm3 N−1 m−1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1–3.7 nm, 41–45 GPa, 0.1–0.2 and 1.4–3.0 × 10−6 mm3 N−1 m−1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10−6 mm3 N−1 m−1).
Resumo:
The expansion of the specialty of sports and exercise medicine (SEM) is a relatively recent development in the medical community and the role of the SEM specialist continues to evolve and develop. The SEM specialist is ideally placed to care for all aspects of physical activity not only in athletes but also in the general population. As an advocate for physical activity the SEM specialist plays a broad role in advising safe effective sports and recreation participation; screening for disease related to sports participation; examining and contributing to the evidence behind treatment strategies and evaluating any potential negative impact of sports injury prevention measures. In this thesis I will demonstrate the breadth of the role the Sports and Exercise Medicine Specialist from epidemiology to in-depth examination of treatment strategies. In Chapter 2, I examined the epidemiology of sports and recreation related injury (SRI) in Ireland, an area that has previously been poorly studied. We report on 3,172 SRI (14% of total presentations) presentations to the ED over 6 months. Paediatric patients (4-16 yrs) were over represented comprising 39.9% of all SRI presentation compared to 16% of total ED presentations and 18% of the general population. These injuries were serious (32% fractures) and though 49% of injuries occurred during organised competition/practice, 41.5% occurred during recreation-most often at home. In Chapter 3, I examined risk factors associated with hand injury in hurling. The previous chapter highlighted the importance of a firm evidence base underpinning treatment strategies. When measures to improve welfare are introduced not only must potential benefits be measured, so too must potential unwanted adverse outcomes. In this study I examined a cohort of adult hurlers who had presented to the ED with a hurling related injury in order to highlight the variables associated with hand injury in this population. I found the athletes who wore a helmet were far more likely (OR 3.15 95% CI (1.51-6.56) p= 0.002) to suffer a hand injury than athletes who did not. Very few of those interviewed (4.9%) used hand protection compared to 65% who used helmet and faceguard. The introduction of the helmet and faceguard in hurling has undeniably decreased the incidence of head and face injury in hurling. However in tandem with this intervention several observational studies have demonstrated an increase in the occurrence of hurling related hand injuries. This study highlights the importance of being cognisant of unanticipated or unintended consequences when implementing a new treatment or intervention. In Chapter 4, I examined the role of population screening as applied to sport and exercise. This is a controversial area –cardiac screening in the exercising population has been the subject of much debate. Specifically I define the prevalence of exercise induced bronchoconstriction (EIB) using a specifically designed sports specific field-testing protocol. In this study I found almost a third (29%) of a full international professional rugby squad had confirmed asthma or EIB, as compared with 12-15% of the general population. Despite regular medical screening, 5 ‘new’ untreated cases (12%) were elicited by the challenge test and in the group already on treatment for asthma/EIB; over 50% still displayed EIB. In Chapter 5, I examined the evidence supporting current treatment options for iliotibial band friction syndrome (ITBFS). The practice of sports medicine has traditionally been ‘eminence based’ rather than ‘evidence based’. This may be problematic as some of these practices are based upon flawed principles- for example the treatment of iliotibial band friction syndrome (ITBFS). In this chapter, using cadaveric and biomechanical studies I expand upon the growing base of evidence clarifying the anatomy and biomechanics of the area-thereby re-examining the principles on which current treatments are based. The role of the SEM specialist is broad; we chose to examine specific examples of some of the roles that they execute. An understanding of the epidemiology of SRI presenting to the ED has implications for individual patients, sports governing bodies and health resource utilisation. Population screening is an important tool in health promotion and disease prevention in the general population. Screening in SEM may have similar less well-recognised benefits. The SEM specialist needs to be conversant in screening for medical conditions concerning physical activity. A comprehensive understanding of the pathophysiology of a disease is required for its diagnosis and treatment. Due to the ongoing evolution of SEM many treatments are eminence-based rather than evidence‐based practice. Continued re-examination of the fundamentals of current practice is essential. An awareness of potential unwanted side effects is essential prior to the introduction of any new treatment or intervention. The SEM specialist is ideally placed to advise sports governing bodies on these issues prior to and during their implementation.