7 resultados para Free fat acids

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A bacteriocin-producing strain of Lactobacillus paracasei DPC 4715 was used as an adjunct culture in Cheddar cheese in order to control the growth of “wild” nonstarter lactic acid bacteria. No suppression of growth of the indicator strain was observed in the experimental cheese. The bacteriocin produced by Lactobacillus paracasei DPC 4715 was sensitive to chymosin and cathepsin D and it may have been cleaved by the rennet used for the cheese manufactured or by indigenous milk proteases. A series of studies were performed using various microbial adjuncts to influence cheese ripening. Microbacterium casei DPC 5281, Corynebacterium casei DPC 5293 and Corynebacterium variabile DPC 5305 were added to the cheesemilk at level of 109 cfu/ml resulting in a final concentration of 108 cfu/g in Cheddar cheese. The strains significantly increased the level of pH 4.6-soluble nitrogen, total free amino acids after 60 and 180 d of ripening and some individual free amino acids after 180 d. Yarrowia lipolytica DPC 6266, Yarrowia lipolytica DPC 6268 and Candida intermedia DPC 6271 were used to accelerate the ripening of Cheddar cheese. Strains were grown in YG broth to a final concentration of 107 cfu/ml, microfluidized, freeze-dried and added to the curd during salting at level of 2% w/w. The yeasts positively affected the primary, secondary proteolysis and lipolysis of cheeses and had aminopeptidase, dipeptidase, esterase and 5’ phosphodiestere activities that contributed to accelerate the ripening and improve the flavor of cheese. Hafia alvei was added to Cheddar cheesemilk at levels of 107 cfu/ml and 108 cfu/ml and its contribution during ripening was evaluated. The strain significantly increased the level of pH 4.6-soluble nitrogen, total free amino-acids, and some individual free amino-acids of Cheddar cheese, whereas no differences in the urea-polyacrylamide gel electrophoresis (urea-PAGE) electrophoretograms of the cheeses were detected. Hafia alvei also significantly increased the level of some biogenic amines. A low-fat Cheddar cheese was made with Bifidobacterium animalis subsp. lactis, strain BB-12® at level of 108 cfu/ml, as a probiotic adjunct culture and Hi-Maize® 260 (resistant high amylose maize starch) at level of 2% and 4% w/v, as a prebiotic fiber which also played the role of fat replacer. Bifidobacterium BB-12 decreased by 1 log cycle after 60 d of ripening and remained steady at level of ~107 cfu/g during ripening. The Young’s modulus also increased proportionally with increasing levels of Hi-maize. Hencky strain at fracture decreased over ripening and increased with increasing in fat replacer. A cheese based medium (CBM) was developed with the purpose of mimicking the cheese environment at an early ripening stage. The strains grown in CBM showed aminopeptidase activity against Gly-, Arg-, Pro- and Phe-p-nitroanalide, whereas, when grown in MRS they were active against all the substrates tested. Both Lb. danicus strains grown in MRS and in CBM had aminotransferase activity towards aromatic amino acids (Phe and Trp) and also branched-chain amino acids (Leu and Val). Esterase activity was expressed against p-nitrophenyl-acetate (C2), pnitrophenyl- butyrate (C4) and p-nitrophenyl-palmitate (C16) and was significantly higher in CBM than in MRS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are numerous review papers discussing liquid nanoemulsions and how they compare to other emulsion systems. Little research is available on dried nanoemulsions. The objectives of this research were to (i) study the effect of varying the continuous phase of nanoemulsions with different carbohydrate/protein ratios on subsequent emulsion stability, and (ii) compare the physicochemical properties, lactose crystallisation properties, microstructure, and lipid oxidation of spray dried nanoemulsions compared to spray dried conventional emulsions having different water and sugar contents. Nanoemulsions containing sunflower oil (10% w/w), β-casein (2.5–10% w/w) and lactose or trehalose (10–17.5%) were produced following optimisation of the continuous phase by maximising and minimising viscosity and glass transition temperature (Tg’) using mixture design software. Increasing levels of β-casein from caused a significant increase in viscosity, particle size, and nanoemulsion stability, while resulting in a decrease in Tg’. Powders were made from spray drying emulsions/nanoemulsions consisting of lactose or a 70:30 mixture of lactose:sucrose (23.9%), sodium caseinate (5.1%) and sunflower oil (11.5%) in water. Nanoemulsions, produced by microfluidisation (100 MPa), had higher stability and lower viscosity than control emulsions (homogenization at 17 MPa) with lower solvent extractable free fat in the resulting powder. Partial replacement of lactose with sucrose decreased Tg and delayed Tcr. DVS and PLM showed that in powdered nanoemulsions, lactose crystallises faster than in powdered conventional emulsions. Microstructure of both powders (CLSM and cryo-SEM) showed different FGS in powders and different structure post lactose crystallisation. Powdered nanoemulsions had lower pentanal and hexanal (indicators of lipid oxidation) after 24 months storage due to their lower free fat and porosity, measured using a validated GC HS-SPME method, This research has shown the effect of altering the continuous phase of nanoemulsions on microstructure of spray dried nanoemulsions, which affects physical properties, sugar crystallisation, and lipid oxidation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objectives of this thesis were to (i) study the effect of increasing protein concentration in milk protein concentrate (MPC) powders on surface composition and sorption properties; (ii) examine the effect of increasing protein content on the rehydration properties of MPC; (iii) study the physicochemical properties of spraydried emulsion-containing powders having different water and oil contents; (iv) analyse the effect of protein type on water sorption and diffusivity properties in a protein/lactose dispersion, and; (v) characterise lactose crystallisation and emulsion stability of model infant formula containing intact or hydrolysed whey proteins. Surface composition of MPC powders (protein contents 35 - 86 g / 100 g) indicated that fat and protein were preferentially located on the surface of powders. Low protein powder (35 g / 100 g) exhibited lactose crystallisation, whereas powders with higher protein contents did not, due to their high protein: lactose ratio. Insolubility was evident in high protein MPCs and was primarily related to insolubility of the casein fraction. High temperature (50 °C) was required for dissolution of high protein MPCs (protein content > 60 g / 100 g). The effect of different oil types and spray-drying outlet temperature on the physicochemical properties of the resultant fat-filled powders was investigated and showed that increasing outlet temperature reduced water content, water activity and tapped bulk density, irrespective of oil type, and increased solvent-extractable free fat for all oil types and onset of glass transition (Tg) and crystallisation (Tcr) temperature. Powder dispersions of protein/lactose (0.21:1), containing either intact or hydrolysed whey protein (12 % degree of hydrolysis; DH), were spray-dried at pilot scale. Moisture sorption analysis at 25 °C showed that dispersions containing intact whey protein exhibited lactose crystallisation at a lower relative humidity (RH). Dispersions containing hydrolysed whey protein had significantly higher (P < 0.05) water diffusivity. Finally, a spray-dried model infant formula was produced containing hydrolysed or intact whey as the protein with sunflower oil as the fat source. Reconstituted, hydrolysed formula had a significantly (P < 0.05) higher fat globule size and lower emulsion stability than intact formula. Lactose crystallisation in powders occurred at higher RH for hydrolysed formula. In conclusion, this research has shown the effect of altering the protein type, protein composition, and oil type on the surface composition and physical properties of different dairy powders, and how these variations greatly affect their rehydration characteristics and storage stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cheddar cheese was made using control culture (Lactococcus lactis subsp. lactis), or with control culture plus a galactose-metabolising (Gal+) or galactose-non-metabolising (Gal-) Streptococcus thermophilus adjunct; for each culture type, the pH at whey drainage was either low (pH 6.15) or high (pH 6.45). Sc. thermophilus affected the levels of residual lactose and galactose, and the volatile compound profile and sensory properties of the mature cheese (270 d) to an extent dependent on the drain pH and phenotype (Gal+ or Gal-). For all culture systems, reducing drain pH resulted in lower levels of moisture and lactic acid, a higher concentration of free amino acids, and higher firmness. The results indicate that Sc. thermophilus may be used to diversify the sensory properties of Cheddar cheese, for example from a fruity buttery odour and creamy flavour to a more acid taste, rancid odour, and a sweaty cheese flavour at high drain pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of sourdough can improve texture, structure, nutritional value, staling rate and shelf life of wheat and gluten-free breads. These quality improvements are associated with the formation of organic acids, exopolysaccharides (EPS), aroma or antifungal compounds. Initially, the suitability of two lactic acid bacteria strains to serve as sourdough starters for buckwheat, oat, quinoa, sorghum and flours was investigated. Wheat flour was chosen as a reference. The obligate heterofermentative lactic acid bacterium (LAB) Weissella cibaria MG1 (Wc) formed the EPS dextran (a α-1,6-glucan) from sucrose in situ with a molecular size of 106 to 107 kDa. EPS formation in all breads was analysed using size exclusion chromatography and highest amounts were formed in buckwheat (4 g/ kg) and quinoa sourdough (3 g/ kg). The facultative heterofermentative Lactobacillus plantarum FST1.7 (Lp) was identified as strong acidifier and was chosen due to its ubiquitous presence in gluten-free as well as wheat sourdoughs (Vogelmann et al. 2009). Both Wc and Lp, showed highest total titratable acids in buckwheat (16.8 ml; 26.0 ml), teff (16.2 ml; 24.5 ml) and quinoa sourdoughs (26.4 ml; 35.3 ml) correlating with higher amounts of fermentable sugars and higher buffering capacities. Sourdough incorporation reduced the crumb hardness after five days of storage in buckwheat (Wc -111%), teff (Wc -39%) and wheat (Wc -206%; Lp -118%) sourdough breads. The rate of staling (N/ day) was reduced in buckwheat (Ctrl 8 N; Wc 3 N; Lp 6 N), teff (Ctrl 13 N; Wc 9 N; Lp 10 N) and wheat (Ctrl 5 N; Wc 1 N; Lp 2 N) sourdough breads. Bread dough softening upon Wc and Lp sourdough incorporation accounted for increased crumb porosity in buckwheat (+10.4%; +4.7), teff (+8.1%; +8.3%) and wheat sourdough breads (+8.7%; +6.4%). Weissella cibaria MG1 sourdough improved the aroma quality of wheat bread but had no impact on aroma of gluten-free breads. Microbial shelf life however, was not prolonged in any of the breads regardless of the starter culture used. Due to the high prevalence of insulin-dependent diabetes mellitus particular amongst coeliac patients, glycaemic control is of great (Berti et al. 2004). The in vitro starch digestibility of gluten-free breads with and without sourdough addition was analysed to predict the GI (pGI). Sourdough can decrease starch hydrolysis in vitro, due to formation of resistant starch and organic acids. Predicted GI of gluten-free control breads were significantly lower than for the reference white wheat bread (GI=100). Starch granule size was investigated with scanning electron microscopy and was significantly smaller in quinoa flour (<2 μm). This resulted in higher enzymatic susceptibility and hence higher pGI for quinoa bread (95). Lowest hydrolysis indexes for sorghum and teff control breads (72 and 74, respectively) correlate with higher gelatinisation peak temperatures (69°C and 71°C, respectively). Levels of resistant starch were not increased by addition of Weissella cibaria MG1 (weak acidifier) or Lactobacillus plantarum FST1.7 (strong acidifier). The pGI was significantly decreased for both wheat sourdough breads (Wc 85; Lp 76). Lactic acid can promote starch interactions with gluten hence decreasing starch susceptibility (Östman et al. 2002). For most gluten-free breads, the pGI was increased upon sourdough addition. Only sorghum and teff Lp sourdough breads (69 and 68, respectively) had significantly decreased pGI. Results suggest that the increase of starch hydrolysis in gluten-free breads was related to mechanism other than presence of organic acids and formation of resistant starch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of the “free-from” trend, biopreservation for bread products has increasingly become important to prevent spoilage since artificial preservatives are more and more rejected by consumers. A literature review conducted as part of this thesis revealed that the evaluation of more suitable antifungal strains of lactic acid bacteria (LAB) is important. Moreover, increasing the knowledge about the origin of the antifungal effect is fundamental for further enhancement of biopreservation. This thesis addresses the investigation of Lactobacillus amylovorus DSM19280, Lb. brevis R2: and Lb. reuteri R29 for biopreservation using in vitro trials and in situ sourdough fermentations of quinoa, rice and wheat flours as biopreservatives in breads. Their contribution to quality and shelf life extension on bread was compared and related to their metabolic activity and substrate features. Moreover, the quantity of antifungal carboxylic acids produced during sourdough fermentation was analysed. Overall a specific profile of antifungal compounds was found in the sourdough samples which were strain and substrate dependently different. The best preservative effect in quinoa sourdough and wheat sourdough bread was achieved when Lb. amylovorus DSM19280 fermented sourdough was used. However, the concentration of the antifungal compounds found in these biopreservatives were much lower when compared with Lb. reuteri R29 as the highest producer. Nevertheless, the artificial application of the highest concentration of these antifungal compounds in chemically acidified wheat sourdough bread succeeded in a longer shelf life than achieved only by acidifying the dough. This evidences their partial contribution to the antifungal activity and their synergy. Additionally, a HRGC/MS method for the identification and quantification of the antifungal active compounds cyclo(Leu-Pro), cyclo(Pro-Pro), cyclo(Met-Pro) and cyclo(Phe-Pro) was successfully developed by using stable isotope dilutions assays with the deuterated counterparts. It was observed that the concentrations of cyclo(Leu-Pro), cyclo(Pro-Pro), and cyclo(Phe-Pro) increased only moderately in MRS-broth and wort fermentation by the activity of the selected microorganism, whereas the concentration of cyclo(Met-Pro) stayed unchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: High-fat diets may contribute to metabolic disease via postprandial changes in serum endotoxin and inflammation. It is unclear how dietary fat composition may alter these parameters. We hypothesized that a meal rich in n-3 (ω3) fatty acids would reduce endotoxemia and associated inflammation but a saturated or n-6 (ω6) fatty acid-rich meal would increase postprandial serum endotoxin concentrations and systemic inflammation in healthy adults. Methods: Healthy adults (n = 20; mean age 25 ± 3.2 S.D. years) were enrolled in this single-blind, randomized, cross-over study. Participants were randomized to treatment and reported to the laboratory, after an overnight fast, on four occasions separated by at least one week. Participants were blinded to treatment meal and consumed one of four isoenergetic meals that provided: 1) 20 % fat (control; olive oil) or 35 % fat provided from 2) n-3 (ω3) (DHA = 500 mg; fish oil); 3) n-6 (ω6) (7.4 g; grapeseed oil) or 4) saturated fat (16 g; coconut oil). Baseline and postprandial blood samples were collected. Primary outcome was defined as the effect of treatment meal on postprandial endotoxemia. Serum was analyzed for metabolites, inflammatory markers, and endotoxin. Data from all 20 participants were analyzed using repeated-measures ANCOVA. Results: Participant serum endotoxin concentration was increased during the postprandial period after the consumption of the saturated fat meal but decreased after the n-3 meal (p < 0.05). The n-6 meal did not effect a different outcome in participant postprandial serum endotoxin concentration from that of the control meal (p > 0.05). There was no treatment meal effect on participant postprandial serum biomarkers of inflammation. Postprandial serum triacylglycerols were significantly elevated following the n-6 meal compared to the n-3 meal. Non-esterified fatty acids were significantly increased after consumption of the saturated fat meal compared to other treatment meals. Conclusions: Meal fatty acid composition modulates postprandial serum endotoxin concentration in healthy adults. However, postprandial endotoxin was not associated with systemic inflammation in vivo. Trial registration: This study was retrospectively registered at clinicaltrials.gov as NCT02521779 on July 28, 2015.