16 resultados para Formation process

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface properties of InP electrodes were examined following anodization in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution, revealed surface pitting and TEM micrographs revealed the porous nature of the film formed on top of the pitted substrate. After anodization in the KOH electrolyte, TEM images revealed that a porous layer extending 500 nm into the substrate had been formed. Analysis of the composition of the anodic products indicates the presence of In2S3 in films grown in (NH4)2S and an In2O3 phase within the porous network formed in KOH.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The different oxidation states of chromium allow its bulk oxide form to be reducible, facilitating the oxygen vacancy formation process, which is a key property in applications such as catalysis. Similar to other useful oxides such as TiO2, and CeO2, the effect of substitutional metal dopants in bulk Cr2O3 and its effect on the electronic structure and oxygen vacancy formation are of interest, particularly in enhancing the latter. In this paper, density functional theory (DFT) calculations with a Hubbard + U correction (DFT+U) applied to the Cr 3d and O 2p states, are carried out on pure and metal-doped bulk Cr2O3 to examine the effect of doping on the electronic and geometric structure. The role of dopants in enhancing the reducibility of Cr2O3 is examined to promote oxygen vacancy formation. The dopants are Mg, Cu, Ni, and Zn, which have a formal +2 oxidation state in their bulk oxides. Given this difference in host and, dopant oxidation states, we show that to predict the correct ground state two metal dopants charge compensated with an oxygen vacancy are required. The second oxygen atom removed is termed "the active" oxygen vacancy and it is the energy required to remove this atom that is related to the reduction process. In all cases, we find that substitutional doping improves the oxygen vacancy formation of bulk Cr2O3 by lowering the energy cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current-voltage characteristics of InP were investigated in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to the growth of passivating films. The relationship between the peak currents and the scan rates suggests that the film formation process is diffusion controlled in both cases. The film thickness required to inhibit current flow was found to be much lower on samples anodized in the sulphide solution. Focused ion beam (FIB) secondary electron images of the surface films show that film cracking of the type reported previously for films grown in (NH4)2S is also observed for films grown in KOH. X-ray and electron diffraction measurements indicate the presence of In2O3 and InPO4 in films grown in KOH and In2S3 in films grown in (NH4)2S.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis investigates the emerging InAlN high electron mobility transistor (HEMT) technology with respect to its application in the space industry. The manufacturing processes and device performance of InAlN HEMTs were compared to AlGaN HEMTs, also produced as part of this work. RF gain up to 4 GHz was demonstrated in both InAlN and AlGaN HEMTs with gate lengths of 1 μm, with InAlN HEMTs generally showing higher channel currents (~150 c.f. 60 mA/mm) but also degraded leakage properties (~ 1 x 10-4 c.f. < 1 x 10-8 A/mm) with respect to AlGaN. An analysis of device reliability was undertaken using thermal stability, radiation hardness and off-state breakdown measurements. Both InAlN and AlGaN HEMTs showed excellent stability under space-like conditions, with electrical operation maintained after exposure to 9.2 Mrad of gamma radiation at a dose rate of 6.6 krad/hour over two months and after storage at 250°C for four weeks. Furthermore a link was established between the optimisation of device performance (RF gain, power handling capabilities and leakage properties) and reliability (radiation hardness, thermal stability and breakdown properties), particularly with respect to surface passivation. Following analysis of performance and reliability data, the InAlN HEMT device fabrication process was optimised by adjusting the metal Ohmic contact formation process (specifically metal stack thicknesses and anneal conditions) and surface passivation techniques (plasma power during dielectric layer deposition), based on an existing AlGaN HEMT process. This resulted in both a reduction of the contact resistivity to around 1 x 10-4 Ω.cm2 and the suppression of degrading trap-related effects, bringing the measured gate-lag close to zero. These discoveries fostered a greater understanding of the physical mechanisms involved in device operation and manufacture, which is elaborated upon in the final chapter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nanometer range structure produced by thin films of diblock copolymers makes them a great of interest as templates for the microelectronics industry. We investigated the effect of annealing solvents and/or mixture of the solvents in case of symmetric Poly (styrene-block-4vinylpyridine) (PS-b-P4VP) diblock copolymer to get the desired line patterns. In this paper, we used different molecular weights PS-b-P4VP to demonstrate the scalability of such high χ BCP system which requires precise fine-tuning of interfacial energies achieved by surface treatment and that improves the wetting property, ordering, and minimizes defect densities. Bare Silicon Substrates were also modified with polystyrene brush and ethylene glycol self-assembled monolayer in a simple quick reproducible way. Also, a novel and simple in situ hard mask technique was used to generate sub-7nm Iron oxide nanowires with a high aspect ratio on Silicon substrate, which can be used to develop silicon nanowires post pattern transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis work is to develop methods for forming and interfacing nanocrystal-molecule nanostructures in order to explore their electrical transport properties in various controlled environments. This work demonstrates the potential of nanocrystal assemblies for laterally contacting molecules for electronic transport measurements. We first propose a phenomenological model based on rate equations for the formation of hybrid nanocrystal-molecule (respectively: 20 nm – 1.2 nm) nanostructures in solution. We then concentrate on nanocrystals (~ 60 nm) assembled between nano-gaps (~ 40 nm) as a contacting strategy for the measurement of electronic transport properties of thiophene-terminated conjugated molecules (1.5 nm long) in a two-terminal configuration, under vacuum conditions. Similar devices were also probed with a three-terminal configuration using thiophene-terminated oxidation-reduction active molecules (1.8 nm long) in liquid medium for the demonstration of the electrolytic gating technique. The experimental and modelling work presented in this thesis project brings into light physical and chemical processes taking place at the extremely narrow (~1 nm separation) and curved interface between two nanocrystals or one nanocrystal and a grain of a metallic electrode. The formation of molecular bridges at this kind of interface necessitates molecules to diffuse from a large liquid reservoir into the region in the first place. Molecular bonding must occur to the surface for both molecular ends: this is a low yield statistical process in itself as it depends on orientation of surfaces, on steric hindrance at the surface and on binding energies. On the other hand, the experimental work also touched the importance of the competition between potentially immiscible liquids in systems such that (organo-)metallic molecules solvated by organic solvent in water and organic solvent in contact with hydrated citrate stabilised nanocrystals dispersed in solutions or assembled between electrodes from both experimental and simulations point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the successful realization of MoS2 nanotubes by a novel intercalation chemistry and hydrothermal treatment. An inorganic-organic precursor of hexadecylamine (HDA) and molybdenum disulphide (MoS2) were used in synthesizing the nanocomposite comprising laminar MoS2 with HDA intercalated in the interlaminar spacing. The formation of MoS2 nanotubes occurred during hydrothermal treatment (HT) by a self-organized rolling mechanism. The nanotubes were observed to have dimensions 2-12 µm in length and inner diameters typically in the range of 25-100 nm. We also report the formation of amorphous nanocoils of MoS2 obtained during similar procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the observation of urchin-like nanostructures consisting of high-density spherical nanotube radial arrays of vanadium oxide nanocomposite, successfully synthesized by a simple chemical route using an ethanolic solution of vanadium tri-isopropoxide and alkyl amine hexadecylamine for 7 days at 180oC. The results show that the growth process of the NanoUrchin occurs in stages, starting with a radial self-organized arrangement of lamina followed by the rolling of the lamina into nanotubes. The longest nanotubes are measured to be several micrometers in length with diameters of ~120 nm and hollow centers typically measured to be ~75 nm. The NanoUrchin have an estimated density of nanotubes of ~40 sr-1. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. The interlayer distance is measured to be 2.9 ± 0.1 nm and electron diffraction identified the vanadate phase in the VOx nanocomposite as orthorhombic V2O5. These nanostructures may be used as three-dimensional composite materials and as supports for other materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When porous InP is anodically formed in KOH electrolytes, a thin layer ~40 nm in thickness, close to the surface, appears to be unmodified. We have investigated the earlier stages of the anodic formation of porous InP in 5 mol dm-3 KOH. TEM clearly shows individual porous domains which appear triangular in cross-section and square in plan view. The crosssections also show that the domains are separated from the surface by a ~40 nm thick, dense InP layer. It is concluded that the porous domains have a square-based pyramidal shape and that each one develops from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain, and these domains eventually form a continuous porous layer. This implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this was seen in plan view TEM images. Merging of domains continues to occur at potentials more anodic than the peak potential, where the current is observed to decrease. When the domains grow, the current density increases correspondingly. Eventually, domains meet, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Quantitative models of this process are being developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis contributes to the understanding of the processes involved in the formation and transformation of identities. It achieves this goal by establishing the critical importance of ‘background’ and ‘liminality’ in the shaping of identity. Drawing mainly from the work of cultural anthropology and philosophical hermeneutics a theoretical framework is constructed from which transformative experiences can be analysed. The particular experience at the heart of this study is the phenomenon of conversion and the dynamics involved in the construction of that process. Establishing the axial age as the horizon from which the process of conversion emerged will be the main theme of the first part of the study. Identifying the ‘birth’ of conversion allows a deeper understanding of the historical dynamics that make up the process. From these fundamental dynamics a theoretical framework is constructed in order to analyse the conversion process. Applying this theoretical framework to a number of case-studies will be the central focus of this study. The transformative experiences of Saint Augustine, the fourteenth century nun Margaret Ebner, the communist revolutionary Karl Marx and the literary figure of Arthur Koestler will provide the material onto which the theoretical framework can be applied. A synthesis of the Judaic religious and the Greek philosophical traditions will be the main findings for the shaping of Augustine’s conversion experience. The dissolution of political order coupled with the institutionalisation of the conversion process will illuminate the mystical experiences of Margaret Ebner at a time when empathetic conversion reached its fullest expression. The final case-studies examine two modern ‘conversions’ that seem to have an ideological rather than a religious basis to them. On closer examination it will be found that the German tradition of Biblical Criticism played a most influential role in the ‘conversion’ of Marx and mythology the best medium to understand the experiences of Koestler. The main ideas emerging from this study highlight the fluidity of identity and the important role of ‘background’ in its transformation. The theoretical framework, as constructed for this study, is found to be a useful methodological tool that can offer insights into experiences, such as conversion, that otherwise would remain hidden from our enquiries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous layers can be formed electrochemically on (100) oriented n-InP substrates in aqueous KOH. A nanoporous layer is obtained underneath a dense near-surface layer and the pores appear to propagate from holes through the near-surface layer. In the early stages of the anodization transmission electron microscopy (TEM) clearly shows individual porous domains that appear to have a square-based pyramidal shape. Each domain appears to develop from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain. When the domains grow, the current density increases correspondingly. Eventually the domains meet, forming a continuous porous layer, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Current-time curves at constant potential exhibit a peak and porous layers are observed to form beneath the electrode surface. The density of pits formed on the surface increases with time and approaches a plateau value. Porous layers are also observed in highly doped InP but are not observed in wafers with doping densities below ~5 × 1017 cm-3. Numerical models of this process have been developed invoking a mechanism of directional selectivity of pore growth preferentially along the <100> lattice directions. Manipulation of the parameters controlling these curves shows that the fall-off in current is controlled by the rate of diffusion of electrolyte through the pore structure with the final decline in current being caused by the termination of growth at the pore tips through the formation of passivating films or some other irreversible modification of the pore tips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface pitting occurs when InP electrodes are anodized in KOH electrolytes at concentrations in the range 2 - 5 mol dm-3. The process has been investigated using atomic force microscopy (AFM) and the results correlated with cross-sectional transmission electron microscopy (TEM) and electroanalytical measurements. AFM measurements show that pitting of the surface occurs and the density of pits is observed to increase with time under both potentiodynamic and potentiostatic conditions. This indicates a progressive pit nucleation process and implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this is seen in plan view TEM images in which individual domains are seen to be at different stages of development. Analysis of the cyclic voltammograms of InP electrodes in 5 mol dm-3 KOH indicates that, above a critical potential for pit formation, the anodic current is predominantly time dependent and there is little differential dependence of the current on potential. Thus, pores continue to grow with time when the potential is high enough to maintain depletion layer breakdown conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.