3 resultados para Foot Measurement Evaluation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim: To develop and evaluate the psychometric properties of an instrument for the measurement of self-neglect (SN).Conceptual Framework: An elder self-neglect (ESN) conceptual framework guided the literature review and scale development. The framework has two key dimensions physical/psycho-social and environmental and seven sub dimensions which are representative of the factors that can contribute to intentional and unintentional SN. Methods: A descriptive cross-sectional design was adopted to achieve the research aim. The study was conducted in two phases. Phase 1 involved the development of the questionnaire content and structure. Phase 2 focused on establishing the psychometric properties of the instrument. Content validity was established by a panel of 8 experts and piloted with 9 health and social care professionals. The instrument was subsequently posted with a stamped addressed envelope to 566 health and social care professionals who met specific eligibility criteria across the four HSE areas. A total of 341 questionnaires were returned, a response rate of 60% and 305 (50%) completed responses were included in exploratory factor analysis (EFA). Item and factor analyses were performed to elicit the instruments underlying factor structure and establish preliminary construct validity. Findings: Item and factor analyses resulted in a logically coherent, 37 items, five factor solution, explaining 55.6% of the cumulative variance. The factors were labelled: ‘Environment’, ‘Social Networks’, ‘Emotional and Behavioural Liability’, ‘Health Avoidance’ and ‘Self-Determinism’. The factor loadings were >0.40 for all items on each of the five subscales. Preliminary construct validity was supported by findings. Conclusion: The main outcome of this research is a 37 item Self-Neglect (SN-37) measurement instrument that was developed by EFA and underpinned by an ESN conceptual framework. Preliminary psychometric evaluation of the instrument is promising. Future work should be directed at establishing the construct and criterion related validity of the instrument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wearable WIMU (Wireless Inertial Measurement Unit) [1] system for sports applications based on Tyndall's 25mm mote technology [2] has been developed to identify tennis performance determining factors, giving coaches & players improved feedback [3, 4]. Multiple WIMUs transmit player motion data to a PC/laptop via a receiver unit. Internally the WIMUs consist of: an IMU layer with MEMS based sensors; a microcontroller/transceiver layer; and an interconnect layer with supplemental 70g accelerometers and a lithium-ion battery. Packaging consists of a robust ABS plastic case with internal padding, a power switch, battery charging port and status LED with Velcro-elastic straps that are used to attach the device to the player. This offers protection from impact, sweat, and movement of sensors which could cause degradation in device performance. In addition, an important requirement for this device is that it needs to be lightweight and comfortable to wear. Calibration ensures that misalignment of the accelerometer and magnetometer axes are accounted for, allowing more accurate measurements to be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work employs a custom built body area network of wireless inertial measurement technology to conduct a biomechanical analysis of precision targeted throwing in competitive and recreational darts. The solution is shown to be capable of measuring key biomechanical factors including speed, acceleration and timing. These parameters are subsequently correlated with scoring performance to determine the affect each variable has on outcome. For validation purposes an optical 3D motion capture system provides a complete kinematic model of the subject and enables concurrent benchmarking of the 'gold standard' optical inertial measurement system with the more affordable and proactive wireless inertial measurement solution developed as part of this work.