3 resultados para Folded Proteins

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vast majority of secreted and membrane proteins are translated and folded at the endoplasmic reticulum (ER), where a sophisticated quality control mechanism ensures that only correctly folded proteins exit the ER and traffic to their final destinations. On the other hand, proteins that persistently misfold are eliminated through a process known as ER associated degradation (ERAD). This involves retrotranslocation of the misfolded protein through the ER membrane, and ubiquitination in advance of degradation by cytosolic proteasomes. The process of ERAD is best described in yeast where ubiquitin conjugating enzymes Ubc6p and Ubc7p function with a limited number of E3 ubiquitin ligases to ubiquitinate misfolded proteins. Interestingly, although the mechanistic principles of ERAD have been conserved through evolution, there is increasing evidence that homologues of the yeast enzymes have gained divergent roles and novel regulatory functions in higher eukaryotes, meaning that the process in humans is more complex and involves a larger repertoire of participating proteins. Two homologues of Ubc6p have been described in humans, and have been named as Ubc6 (UBE2J2) and Ubc6e (UBE2J1). However, little work has been done on these enzymes and thus our main objective of this study was to progress the functional characterisation of these ERAD E2 conjugating enzymes. Our studies included a detailed analysis of conditions whereby these proteins are stabilised and degraded. We’ve also explored the different molecular signalling pathways that induced changes on their steady state protein levels. Furthermore, Ubc6e has a phosphorylatable serine residue at position 184. Thus, our studies also involved delineating the signalling kinases that phosphorylate Ubc6e and examining its function in ERAD. Our studies confirm that the E2 Ubc enzymes are regulated posttranslationally and may have important implications in the regulation of ERAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rab4 is a member of the Rab superfamily of small GTPases. It is localized to the early sorting endosome and plays a role in regulating the transport from this compartment to the recycling and degradative pathways. In order to further our understanding of the role Rab4 plays in endocytosis, a yeast two-hybrid screen was performed to identify putative Rab4 effectors. A constitutively active mutant of Rab4, Rab4Q67L, when used as bait to screen a HeLa cDNA library, identified a novel 80kDa protein that interacted with Rab4-GTP. This protein was called Rab Coupling Protein (RCP). RCP interacts preferentially with the GTP-bound form of Rab4. Subsequent work demonstrated that RCP also interacts with Rab11, and that this interaction is not nucleotide-depenedent. RCP is predominantly membrane-bound and localised to the perinuclear recycling compartment. Expression of a truncation mutant of RCP, that contains the Rab binding domain, in HeLa cells, results in the formation of an extensive tubular network that can be labelled with transferrin. These tubules are derived from the recycling compartment since they are inaccessible to transferrin when the ligand is internalised at 18oC. The truncation mutant-induced morphology can be rescued by overexpression of active Rab11, but not active Rab4. This suggests that RCP functions between Rab4 and Rab11 in the receptor recycling pathway, and may act as a ‘molecular bridge’ between these two sequentially acting small GTPases. Quantitative assays demonstrated that overexpression of the truncation mutant results in a dramatic inhibition in the rate of receptor recycling. Database analysis revealed that RCP belongs to a family of Rab interacting proteins, each characterised by a carboxy-terminal coiled-coil domain and an amino-terminal phospholipid-binding domain. KIAA0941, an RCP homologue, interacts with Rab11, but not with Rab4. Overexpression of its Rab binding domain also results in a tubular network, however, this tubulation cannot be rescued by active Rab11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HFE is a transmembrane protein that becomes N-glycosylated during transport to the cell membrane. It acts to regulate cellular iron uptake by interacting with the Type 1 transferrin receptor and interfering with its ability to bind iron-loaded transferrin. There is also evidence that HFE regulates systemic iron levels by binding to the Type II transferrin receptor although the mechanism by which this occurs is still not well understood. Mutations to HFE that disrupt this function, or physiological conditions that decrease HFE protein levels, are associated with increased iron uptake, and its accumulation in tissues and organs. This is exemplified by the point mutation that results in conversion of cysteine residue 282 to tyrosine (C282Y), and gives rise to the majority of HFE-related hemochromatoses. The C282Y mutation prevents the formation of a disulfide bridge and disrupts the interaction with its co-chaperone β2-microglobulin. The resulting misfolded protein is retained within the endoplasmic reticulum (ER) where it activates the Unfolded Protein Response (UPR) and is subjected to proteasomal degradation. The absence of functional HFE at the cell surface leads to unregulated iron uptake and iron loading. While the E3 ubiquitin ligase involved in the degradation of HFE-C282Y has been identified, the mechanism by which it is targeted for degradation remains relatively obscure. The primary objective of this project was to further our understanding of how the iron regulatory HFE protein is targeted for degradation. Our studies suggest that the glycosylation status, and the active process of deglycosylation, are central to this process. We identified a number of additional factors that can contribute towards degradation and explored their regulation during ER stress conditions.