5 resultados para Fluorescent Silica Colloids
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The objective of this thesis was to improve the dissolution rate of the poorly waters-soluble drug, fenofibrate by processing it with a high surface area carrier, mesoporous silica. The subsequent properties of the drug – silica composite were studied in terms of drug distribution within the silica matrix, solid state and release properties. Prior to commencing any experimental work, the properties of unprocessed mesoporous silica and fenofibrate were characterised (chapter 3), this allowed for comparison with the processed samples studied in later chapters. Fenofibrate was a highly stable, crystalline drug that did not adsorb moisture, even under long term accelerated storage conditions. It maintained its crystallinity even after SC-CO2 processing. Its dissolution rate was limited and dependent on the characteristics of the particular in vitro media studied. Mesoporous silica had a large surface area and mesopore volume and readily picked up moisture when stored under long term accelerated storage conditions (75% RH, 40 oC). It maintained its mesopore character after SC-CO2 processing. A variety of methods were employed to process fenofibrate with mesoporous silica including physical mixing, melt method, solvent impregnation and novel methods such as liquid and supercritical carbon dioxide (SC-CO2) (chapter 4). It was found that it was important to break down the fenofibrate particulate structure to a molecular state to enable drug molecules enter into the silica mesopores. While all processing methods led to some increase in fenofibrate release properties; the impregnation, liquid and SC-CO2 methods produced the most rapid release rates. SC-CO2 processing was further studied with a view to optimising the processing parameters to achieve the highest drug-loading efficiency possible (chapter 5). In this thesis, it was that SC-CO2 processing pressure had a bearing on drug-loading efficiency. Neither pressure, duration or depressurisation rate affected drug solid state or release properties. The amount of drug that could be loaded onto to the mesoporous silica successfully was also investigated at different ratios of drug mass to silica surface area under constant SC-CO2 conditions; as the drug – silica ratio increased, the drug-loading efficiency decreased, while there was no effect on drug solid state or release properties. The influence of the number of drug-loading steps was investigated (chapter 6) with a view to increasing the drug-loading efficiency. This multiple step approach did not yield an increase in drug-loading efficiency compared to the single step approach. It was also an objective in this chapter to understand how much drug could be loaded into silica mesopores; a method based on the known volume of the mesopores and true density of drug was investigated. However, this approach led to serious repercussions in terms of the subsequent solid state nature of the drug and its release performance; there was significant drug crystallinity and reduced release extent. The impact of in vitro release media on fenofibrate release was also studied (chapter 6). Here it was seen that media containing HCl led to reduced drug release over time compared to equivalent media not containing HCl. The key findings of this thesis are discussed in chapter 7 and included: 1. Drug – silica processing method strongly influenced drug distribution within the silica matrix, drug solid state and release. 2. The silica surface area and mesopore volume also influenced how much drug could be loaded. It was shown that SC-CO2 processing variables such as processing pressure (13.79 – 41.37 MPa), duration time (4 – 24 h) and depressurisation rate (rapid or controlled) did not influence the drug distribution within the SBA- 15 matrix, drug solid state form or release. Possible avenues of research to be considered going forward include the development and application of high resolution imaging techniques to visualise drug molecules within the silica mesopores. Also, the issues surrounding SBA-15 usage in a pharmaceutical manufacturing environment should be addressed.
Resumo:
In developing a biosensor, the utmost important aspects that need to be emphasized are the specificity and selectivity of the transducer. These two vital prerequisites are of paramount in ensuring a robust and reliable biosensor. Improvements in electrochemical sensors can be achieved by using microelectrodes and to modify the electrode surface (using chemical or biological recognition layers to improve the sensitivity and selectivity). The fabrication and characterisations of silicon-based and glass-based gold microelectrode arrays with various geometries (band and disc) and dimension (ranging from 10 μm-100 nm) were reported. It was found that silicon-based transducers of 10 μm gold microelectrode array exhibited the most stable and reproducible electrochemical measurements hence this dimension was selected for further study. Chemical electrodeposition on both 10 μm microband and microdisc were found viable by electro-assisted self-assembled sol-gel silica film and nanoporous-gold electrodeposition respectively. The fabrication and characterisations of on-chip electrochemical cell was also reported with a fixed diameter/width dimension and interspacing variation. With this regard, the 10 μm microelectrode array with interspacing distance of 100 μm exhibited the best electrochemical response. Surface functionalisations on single chip of planar gold macroelectrodes were also studied for the immobilisation of histidine-tagged protein and antibody. Imaging techniques such as atomic force microscopy, fluorescent microscopy or scanning electron microscope were employed to complement the electrochemical characterisations. The long-chain thiol of self-assembled monolayer with NTA-metal ligand coordination was selected for the histidine-tagged protein while silanisation technique was selected for the antibody immobilisation. The final part of the thesis described the development of a T-2 labelless immunosensor using impedimetric approach. Good antibody calibration curve was obtained for both 10 μm microband and 10 μm microdisc array. For the establishment of the T-2/HT-2 toxin calibration curve, it was found that larger microdisc array dimension was required to produce better calibration curve. The calibration curves established in buffer solution show that the microelectrode arrays were sensitive and able to detect levels of T-2/HT-2 toxin as low as 25 ppb (25 μg kg-1) with a limit of quantitation of 4.89 ppb for a 10 μm microband array and 1.53 ppb for the 40 μm microdisc array.
Resumo:
The research work included in this thesis examines the synthesis, characterization and chromatographic evaluation of novel bonded silica stationary phases. Innovative methods of preparation of silica hydride intermediates and octadecylsilica using a “green chemistry” approach eliminate the use of toxic organic solvents and exploit the solvating power and enhanced diffusivity of supercritical carbon dioxide to produce phases with a surface coverage of bonded ligands which is comparable to, or exceeds, that achieved using traditional organic solvent-based methods. A new stationary phase is also discussed which displays chromatographic selectivity based on molecular recognition. Chapter 1 introduces the chemistry of silica stationary phases, the retention mechanisms and theories on which reversed-phase liquid chromatography and hydrophilic interaction chromatograpy are based, the art and science of achieving a well packed liquid chromatography column, the properties of supercritical carbon dioxide and molecular recognition chemistry. Chapter 2 compares the properties of silica hydride materials prepared using supercritical carbon dioxide as the reaction medium with those synthesized in an organic solvent. A higher coverage of hydride groups on the silica surface is seen when a monofunctional silane is reacted in supercritical carbon dioxide while trifunctional silanes result in a phase which exhibits different properties depending on the reaction medium used. The differing chromatographic behaviour of these silica hydride materials prepared using supercritical carbon dioxide and using organic solvent are explored in chapter 3. Chapter 4 focusses on the preparation of octadecylsilica using mono-, di- and trifunctional alkoxysilanes in supercritical carbon dioxide and in anhydrous toluene. The surface coverage of octadecyl groups, as calculated using thermogravimetric analysis and elemental analysis, is highest when a trifunctional alkoxysilane is reacted with silica in supercritical carbon dioxide. A novel silica stationary phase is discussed in chapter 5 which displays selectivity for analytes based on their hydrogen bonding capabilities. The phase is also highly selective for barbituric acid and may have a future application in the solid phase extraction of barbiturates from biological samples.
Resumo:
Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.
Resumo:
The concept of pellicular particles was suggested by Horváth and Lipsky over fifty years ago. The reasoning behind the idea of these particles was to improve column efficiency by shortening the pathways analyte molecules can travel, therefore reducing the effect of the A and C terms. Several types of shell particles were successfully marketed around this time, however with the introduction of high quality fully porous silica under 10 μm, shell particles faded into the background. In recent years a new generation of core shell particles have become popular within the separation science community. These particles allow fast and efficient separations that can be carried out on conventional HPLC systems. Chapter 1 of this thesis introduces the chemistry of chromatographic stationary phases, with an emphasis on silica bonded phases, particularly focusing on the current state of technology in this area. The main focus is on superficially porous silica particles as a support material for liquid chromatography. A summary of the history and development of these particles over the past few decades is explored, along with current methods of synthesis of shell particles. While commercial shell particles have a rough outer surface, Chapter 2 focuses on the novel approach to growth of smooth surface superficially porous particles in a step-by-step manner. From the Stöber methodology to the seeded growth technique, and finally to the layer-bylayer growth of the porous shell. The superficially porous particles generated in this work have an overall diameter of 2.6 μm with a 350 nm porous shell; these silica particles were characterised using SEM, TEM and BET analysis. The uniform spherical nature of the particles along with their surface area, pore size and particle size distribution are examined in this chapter. I discovered that these smooth surface shell particles can be synthesised to give comparable surface area and pore size in comparison to commercial brands. Chapter 3 deals with the bonding of the particles prepared in Chapter 2 with C18 functionality; one with a narrow and one with a wide particle size distribution. This chapter examines the chromatographic and kinetic performance of these silica stationary phases, and compares them to a commercial superficially porous silica phase with a rough outer surface. I found that the particle size distribution does not seem to be the major contributor to the improvement in efficiency. The surface morphology of the particles appears to play an important role in the packing process of these particles and influences the Van Deemter effects. Chapter 4 focuses on the functionalisation of 2.6 μm smooth surface superficially porous particles with a variety of fluorinated and phenyl silanes. The same processes were carried out on 3.0 μm fully porous silica particles to provide a comparison. All phases were accessed using elemental analysis, thermogravimetric analysis, nitrogen sorption analysis and chromatographically evaluated using the Neue test. I observed comparable results for the 2.6 μm shell pentaflurophenyl propyl silica when compared to 3.0 μm fully porous silica. Chapter 5 moves towards nano-particles, with the synthesis of sub-1 μm superficially porous particles, their characterisation and use in chromatography. The particles prepared are 750 nm in total with a 100 nm shell. All reactions and testing carried out on these 750 nm core shell particles are also carried out on 1.5 μm fully porous particles in order to give a comparative result. The 750 nm core shell particles can be synthesised quickly and are very uniform. The main drawback in their use for HPLC is the system itself due to the backpressure experienced using sub – 1 μm particles. The synthesis of modified Stöber particles is also examined in this chapter with a range of non-porous silica and shell silica from 70 nm – 750 nm being tested for use on a Langmuir – Blodgett system. These smooth surface shell particles have only been in existence since 2009. The results displayed in this thesis demonstrate how much potential smooth surface shell particles have provided more in-depth optimisation is carried out. The results on packing studies reported in this thesis aims to be a starting point for a more sophisticated methodology, which in turn can lead to greater chromatographic improvements.