3 resultados para Fimbrial antigens

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG-/-recipients) are reconstituted with naive CD4+ T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4+ T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG-/- hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammatory bowel diseases (IBD), encompasses a range of chronic, immune-mediated inflammatory disorders that are usually classified under two major relapsing conditions, Crohn’s Disease (CD) and ulcerative colitis (UC). Extensive studies in the last decades have suggested that the etiology of IBD involves environmental and genetic factors that lead to dysfunction of epithelial barrier with consequent deregulation of the mucosal immune system and inadequate responses to gut microbiota.Over the last decade, the microbial species that has attracted the most attention, with respect to CD etiology, is Eschericia coli. In CD tissue, E. coli antigens have also been identified in macrophages within the lamina propria, granulomas, and in the germinal centres of mesenteric lymph nodes of patients. They have been shown to adhere to and invade intestinal epithelial cells whilst also being able to extensively replicate within macrophages. Through the work of genome-wide association studies (GWAS), there is growing evidence to suggest that the microbial imbalance between commensal and pathogenic bacteria in the gut is aided by a defect in the innate immune system. Autophagy represents a recently investigated pathway that is believed to contribute to the pathogenesis of CD, with studies identified a variant of the autophagy gene, ATG16L1, as a susceptibility gene. The aim of my thesis was to study the cellular and molecular mechanism promoted by E.coli strains in epithelial cells and to assess their contribution to IBD pathology. To achieve this we focused on developing both an in vitro and in vivo model of AIEC infection. This allowed us to further our knowledge on possible mechanisms utilised by AIEC that promoted their survival, as well as developing a better understanding of host reactions. We demonstrate a new survival mechanism promoted by E.coli HM605, whereby it induces the expression of the anti-apoptotic proteins Bcl-XL and BCL2, all of which is exacerbated in an autophagy deficient system. We have also demonstrated the presence of AIEC-induced inflammasome responses in epithelial cells which are exacerbated in an autophagy deficient system and expression of NOD-like receptors (NLRs) which might mediate inflammasome responses in vivo. Finally, we used the Citrobacter rodentium model of infectious colitis to identify Pellino3 as an important mediator in the NOD2 pathway and regulator of intestinal inflammation. In summary, we have developed robust and versatile models of AIEC infection as well as provide new insights into AIEC mediated survival pathways. The collected data provides a new perception into why AIEC bacteria are able to prosper in conditions associated with Crohn’s disease patients with a defect in autophagy.