2 resultados para Filmes de Langmuir-Blodgett

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colloidal photonic crystals (PhCs) possess a periodic dielectric structure which gives rise to a photonic band gap (PBG) and offer great potential in the ability to modify or control light at visible wavelengths. Although the refractive index contrast between the void or infill and the matrix material is paramount for photonics applications, integration into real optoelectronics devices will require a range of added functionalities such as conductivity. As such, colloidal PhCs can be used as templates to direct infiltration of other functional materials using a range of deposition strategies. The work in this thesis seeks to address two challenges; first to develop a reproducible strategy based on Langmuir-Blodgett (LB) deposition to assemble high quality colloidal PhCs based on silica with precise film thickness as most other assembly methods suffer from a lack of reproducibility thickness control. The second is to investigate the use of LBdeposited colloidal PhCs as templates for infiltration with conducting metal oxide materials using vapor phase deposition techniques. Part of this work describes the synthesis and assembly of colloidal silica spheres with different surface chemical functionalities at the air-water interface in preparation for LB deposition. Modification of surface funtionality conferred varying levels of hydrophobicity upon the particles. The behaviour of silica monolayer films at the air-water interface was characterised by Brewster Angle Microscopy and surface pressure isotherms with a view to optimising the parameters for LB deposition of multilayer colloidal PhC films. Optical characterisation of LB-fabricated colloidal PhCs indicated high quality photonic behaviour, exhibiting a pseudo PBG with a sharp Bragg diffraction peak in the visible region and reflectance intensities greater than 60%. Finally the atomic layer deposition (ALD) of nominally undoped ZnO and aluminium “doped” ZnO (Al-doped ZnO) inside the pores of a colloidal PhC assembled by the LB technique was carried out. ALD growth in this study was performed using trimethyl aluminium (TMA) and water as precursors for the alumina and diethyl zinc (DEZn) and water for the ZnO. The ZnO:Al films were grown in a laminate mode, where DEZn pulses were substituted for TMA pulses in the sequences with a Zn:Al ratio 19:1. The ALD growth of ZnO and ZnO:Al in colloidal PhCs was shown to be highly conformal, tuneable and reproducible whilst maintaining excellent photonic character. Furthermore, at high levels of infiltration the opal composite films demonstrated significant conductivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concept of pellicular particles was suggested by Horváth and Lipsky over fifty years ago. The reasoning behind the idea of these particles was to improve column efficiency by shortening the pathways analyte molecules can travel, therefore reducing the effect of the A and C terms. Several types of shell particles were successfully marketed around this time, however with the introduction of high quality fully porous silica under 10 μm, shell particles faded into the background. In recent years a new generation of core shell particles have become popular within the separation science community. These particles allow fast and efficient separations that can be carried out on conventional HPLC systems. Chapter 1 of this thesis introduces the chemistry of chromatographic stationary phases, with an emphasis on silica bonded phases, particularly focusing on the current state of technology in this area. The main focus is on superficially porous silica particles as a support material for liquid chromatography. A summary of the history and development of these particles over the past few decades is explored, along with current methods of synthesis of shell particles. While commercial shell particles have a rough outer surface, Chapter 2 focuses on the novel approach to growth of smooth surface superficially porous particles in a step-by-step manner. From the Stöber methodology to the seeded growth technique, and finally to the layer-bylayer growth of the porous shell. The superficially porous particles generated in this work have an overall diameter of 2.6 μm with a 350 nm porous shell; these silica particles were characterised using SEM, TEM and BET analysis. The uniform spherical nature of the particles along with their surface area, pore size and particle size distribution are examined in this chapter. I discovered that these smooth surface shell particles can be synthesised to give comparable surface area and pore size in comparison to commercial brands. Chapter 3 deals with the bonding of the particles prepared in Chapter 2 with C18 functionality; one with a narrow and one with a wide particle size distribution. This chapter examines the chromatographic and kinetic performance of these silica stationary phases, and compares them to a commercial superficially porous silica phase with a rough outer surface. I found that the particle size distribution does not seem to be the major contributor to the improvement in efficiency. The surface morphology of the particles appears to play an important role in the packing process of these particles and influences the Van Deemter effects. Chapter 4 focuses on the functionalisation of 2.6 μm smooth surface superficially porous particles with a variety of fluorinated and phenyl silanes. The same processes were carried out on 3.0 μm fully porous silica particles to provide a comparison. All phases were accessed using elemental analysis, thermogravimetric analysis, nitrogen sorption analysis and chromatographically evaluated using the Neue test. I observed comparable results for the 2.6 μm shell pentaflurophenyl propyl silica when compared to 3.0 μm fully porous silica. Chapter 5 moves towards nano-particles, with the synthesis of sub-1 μm superficially porous particles, their characterisation and use in chromatography. The particles prepared are 750 nm in total with a 100 nm shell. All reactions and testing carried out on these 750 nm core shell particles are also carried out on 1.5 μm fully porous particles in order to give a comparative result. The 750 nm core shell particles can be synthesised quickly and are very uniform. The main drawback in their use for HPLC is the system itself due to the backpressure experienced using sub – 1 μm particles. The synthesis of modified Stöber particles is also examined in this chapter with a range of non-porous silica and shell silica from 70 nm – 750 nm being tested for use on a Langmuir – Blodgett system. These smooth surface shell particles have only been in existence since 2009. The results displayed in this thesis demonstrate how much potential smooth surface shell particles have provided more in-depth optimisation is carried out. The results on packing studies reported in this thesis aims to be a starting point for a more sophisticated methodology, which in turn can lead to greater chromatographic improvements.