2 resultados para Feixes de protons
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis investigates the mechanisms by which HRG-1 contributes to the invasive and cytoprotective signalling pathways in cancer cells through its effects on VATPase activity and heme transport. Plasma membrane-localised V-ATPase activity correlates with enhanced metastatic potential in cancer cells, which is attributed to extrusion of protons into the extracellular space and activation of pH-sensitive, extracellular matrix degrading-proteases. We found that HRG-1 is co-expressed with the V-ATPase at the plasma membrane of certain aggressive cancer cell types. Modulation of HRG-1 expression altered both the localisation and activity of the VATPase. We also found that HRG-1 enhances trafficking of essential transporters such as the glucose transporter (GLUT-1) in cancer cells, and increases glucose uptake, which is required for cancer cell growth, metabolism and V-ATPase assembly. Heme is potentially cytotoxic, owing to its iron moiety, and therefore the trafficking of heme is tightly controlled in cells. We hypothesised that HRG-1 is required for the transport of heme to intracellular compartments. Importantly, we found that HRG-1 interacts with the heme oxygenases that are necessary for heme catabolism. HRG-1 is also required for trafficking of both heme-bound and nonheme-bound receptors and suppression of HRG-1 results in perturbed receptor trafficking to the lysosome. Suppression of HRG-1 in HeLa cells increases toxic heme accumulation, reactive oxygen species accumulation, and DNA damage resulting in caspasedependent cell death. Mutation of essential heme binding residues in HRG-1 results in decreased heme binding to HRG-1. Interestingly, cells expressing heme-binding HRG-1 mutants exhibit decreased internalisation of the transferrin receptor compared to cells expressing wildtype HRG-1. These findings suggest that HRG- 1/heme trafficking contributes to a hitherto unappreciated aspect of receptormediated endocytosis. Overall, the findings of this thesis show that HRG-1-mediated regulation of intracellular and extracellular pH through V-ATPase activity is essential for a functioning endocytic pathway. This is critical for cells to acquire nutrients such as folate, iron and glucose and to mediate signalling in response to growth factor activation. Thus, HRG-1 facilitates enhanced metabolic activity of cancer cells to enable tumour growth and metastasis.
Resumo:
The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.