3 resultados para Faecal Occult Blood test (FOBt)
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This study aimed to investigate the effects of sex and deprivation on participation in a population-based faecal immunochemical test (FIT) colorectal cancer screening programme. The study population included 9785 individuals invited to participate in two rounds of a population-based biennial FIT-based screening programme, in a relatively deprived area of Dublin, Ireland. Explanatory variables included in the analysis were sex, deprivation category of area of residence and age (at end of screening). The primary outcome variable modelled was participation status in both rounds combined (with “participation” defined as having taken part in either or both rounds of screening). Poisson regression with a log link and robust error variance was used to estimate relative risks (RR) for participation. As a sensitivity analysis, data were stratified by screening round. In both the univariable and multivariable models deprivation was strongly associated with participation. Increasing affluence was associated with higher participation; participation was 26% higher in people resident in the most affluent compared to the most deprived areas (multivariable RR = 1.26: 95% CI 1.21–1.30). Participation was significantly lower in males (multivariable RR = 0.96: 95%CI 0.95–0.97) and generally increased with increasing age (trend per age group, multivariable RR = 1.02: 95%CI, 1.01–1.02). No significant interactions between the explanatory variables were found. The effects of deprivation and sex were similar by screening round. Deprivation and male gender are independently associated with lower uptake of population-based FIT colorectal cancer screening, even in a relatively deprived setting. Development of evidence-based interventions to increase uptake in these disadvantaged groups is urgently required.
Resumo:
The goal of this research is to produce a system for powering medical implants to increase the lifetime of the implanted devices and reduce the battery size. The system consists of a number of elements – the piezoelectric material for generating power, the device design, the circuit for rectification and energy storage. The piezoelectric material is analysed and a process for producing a repeatable high quality piezoelectric material is described. A full width half maximum (FWHM) of the rocking curve X-Ray diffraction (XRD) scan of between ~1.5° to ~1.7° for test wafers was achieved. This is state of the art for AlN on silicon and means devices with good piezoelectric constants can be fabricated. Finite element modelling FEM) was used to design the structures for energy harvesting. The models developed in this work were established to have an accuracy better than 5% in terms of the difference between measured and modelled results. Devices made from this material were analysed for power harvesting ability as well as the effect that they have on the flow of liquid which is an important consideration for implantable devices. The FEM results are compared to experimental results from laser Doppler vibrometry (LDV), magnetic shaker and perfusion machine tests. The rectifying circuitry for the energy harvester was also investigated. The final solution uses multiple devices to provide the power to augment the battery and so this was a key feature to be considered. Many circuits were examined and a solution based on a fully autonomous circuit was advanced. This circuit was analysed for use with multiple low power inputs similar to the results from previous investigations into the energy harvesting devices. Polymer materials were also studied for use as a substitute for the piezoelectric material as well as the substrate because silicon is more brittle.
Resumo:
Background: Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults. Results: Use of the storage vials increased the quality of extracted bacterial DNA by reduction of DNA shearing. When infant and elderly datasets were examined separately, no differences in microbiota composition were observed due to storage. When the two datasets were combined, there was a difference according to a Wilcoxon test in the relative proportions of Faecalibacterium, Sporobacter, Clostridium XVIII, and Clostridium XlVa after 1 week's storage compared to immediately extracted samples. After 2 weeks' storage, Bacteroides abundance was also significantly different, showing an apparent increase from week 1 to week 2. The microbiota composition of infant samples was more affected than that of elderly samples by storage, with significantly higher Spearman distances between paired freshly extracted and stored samples (p