2 resultados para FL
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.
Resumo:
The Leaving Certificate (LC) is the national, standardised state examination in Ireland necessary for entry to third level education – this presents a massive, raw corpus of data with the potential to yield invaluable insight into the phenomena of learner interlanguage. With samples of official LC Spanish examination data, this project has compiled a digitised corpus of learner Spanish comprised of the written and oral production of 100 candidates. This corpus was then analysed using a specific investigative corpus technique, Computer-aided Error Analysis (CEA, Dagneaux et al, 1998). CEA is a powerful apparatus in that it greatly facilitates the quantification and analysis of a large learner corpus in digital format. The corpus was both compiled and analysed with the use of UAM Corpus Tool (O’Donnell 2013). This Tool allows for the recording of candidate-specific variables such as grade, examination level, task type and gender, therefore allowing for critical analysis of the corpus as one unit, as separate written and oral sub corpora and also of performance per task, level and gender. This is an interdisciplinary work combining aspects of Applied Linguistics, Learner Corpus Research and Foreign Language (FL) Learning. Beginning with a review of the context of FL learning in Ireland and Europe, I go on to discuss the disciplinary context and theoretical framework for this work and outline the methodology applied. I then perform detailed quantitative and qualitative analyses before going on to combine all research findings outlining principal conclusions. This investigation does not make a priori assumptions about the data set, the LC Spanish examination, the context of FLs or of any aspect of learner competence. It undertakes to provide the linguistic research community and the domain of Spanish language learning and pedagogy in Ireland with an empirical, descriptive profile of real learner performance, characterising learner difficulty.