5 resultados para Expansion devices

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this project is to integrate neuronal cell culture with commercial or in-house built micro-electrode arrays and MEMS devices. The resulting device is intended to support neuronal cell culture on its surface, expose specific portions of a neuronal population to different environments using microfluidic gradients and stimulate/record neuronal electrical activity using micro-electrode arrays. Additionally, through integration of chemical surface patterning, such device can be used to build neuronal cell networks of specific size, conformation and composition. The design of this device takes inspiration from the nervous system because its development and regeneration are heavily influenced by surface chemistry and fluidic gradients. Hence, this device is intended to be a step forward in neuroscience research because it utilizes similar concepts to those found in nature. The large part of this research revolved around solving technical issues associated with integration of biology, surface chemistry, electrophysiology and microfluidics. Commercially available microelectrode arrays (MEAs) are mechanically and chemically brittle making them unsuitable for certain surface modification and micro-fluidic integration techniques described in the literature. In order to successfully integrate all the aspects into one device, some techniques were heavily modified to ensure that their effects on MEA were minimal. In terms of experimental work, this thesis consists of 3 parts. The first part dealt with characterization and optimization of surface patterning and micro-fluidic perfusion. Through extensive image analysis, the optimal conditions required for micro-contact printing and micro-fluidic perfusion were determined. The second part used a number of optimized techniques and successfully applied these to culturing patterned neural cells on a range of substrates including: Pyrex, cyclo-olefin and SiN coated Pyrex. The second part also described culturing neurons on MEAs and recording electrophysiological activity. The third part of the thesis described integration of MEAs with patterned neuronal culture and microfluidic devices. Although integration of all methodologies proved difficult, a large amount of data relating to biocompatibility, neuronal patterning, electrophysiology and integration was collected. Original solutions were successfully applied to solve a number of issues relating to consistency of micro printing and microfluidic integration leading to successful integration of techniques and device components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European Union has set out an ambitious 20% target for renewable energy use by 2020. It is expected that this will be met mainly by wind energy. Looking towards 2050, reductions in greenhouse gas emissions of 80-95% are to be sought. Given the issues securing this target in the transport and agriculture sectors, it may only be possible to achieve this target if the power sector is carbon neutral well in advance of 2050. This has permitted the vast expansion of offshore renewables, wind, wave and tidal energy. Offshore wind has undergone rapid development in recent years however faces significant challenges up to 2020 to ensure commercial viability without the need for government subsidies. Wave energy is still in the very early stages of development so as yet there has been no commercial roll out. As both of these technologies are to face similar challenges in ensuring they are a viable alternative power generation method to fossil fuels, capitalising on the synergies is potentially a significant cost saving initiative. The advent of hybrid solutions in a variety of configurations is the subject of this thesis. A singular wind-wave energy platform embodies all the attributes of a hybrid system, including sharing space, transmission infrastructure, O&M activities and a platform/foundation. This configuration is the subject of this thesis, and it is found that an OWC Array platform with multi-MegaWatt wind turbines is a technically feasible, and potentially an economically feasible solution in the long term. Methods of design and analysis adopted in this thesis include numerical and physical modelling of power performance, structural analysis, fabrication cost modelling, simplified project economic modelling and time domain reliability modelling of a 210MW hybrid farm. The application of these design and analysis methods has resulted in a hybrid solution capable of producing energy at a cost between €0.22/kWh and €0.31/kWh depending on the source of funding for the project. Further optimisation through detailed design is expected to lower this further. This thesis develops new and existing methods of design and analysis of wind and wave energy devices. This streamlines the process of early stage development, while adhering to the widely adopted Concept Development Protocol, to develop a technically and economically feasible, combined wind-wave energy hybrid solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continued advancement of metal oxide semiconductor field effect transistor (MOSFET) technology has shifted the focus from Si/SiO2 transistors towards high-κ/III-V transistors for high performance, faster devices. This has been necessary due to the limitations associated with the scaling of the SiO2 thickness below ~1 nm and the associated increased leakage current due to direct electron tunnelling through the gate oxide. The use of these materials exhibiting lower effective charge carrier mass in conjunction with the use of a high-κ gate oxide allows for the continuation of device scaling and increases in the associated MOSFET device performance. The high-κ/III-V interface is a critical challenge to the integration of high-κ dielectrics on III-V channels. The interfacial chemistry of the high-κ/III-V system is more complex than Si, due to the nature of the multitude of potential native oxide chemistries at the surface with the resultant interfacial layer showing poor electrical insulating properties when high-κ dielectrics are deposited directly on these oxides. It is necessary to ensure that a good quality interface is formed in order to reduce leakage and interface state defect density to maximise channel mobility and reduce variability and power dissipation. In this work, the ALD growth of aluminium oxide (Al2O3) and hafnium oxide (HfO2) after various surface pre-treatments was carried out, with the aim of improving the high-κ/III-V interface by reducing the Dit – the density of interface defects caused by imperfections such as dangling bonds, dimers and other unsatisfied bonds at the interfaces of materials. A brief investigation was performed into the structural and electrical properties of Al2O3 films deposited on In0.53Ga0.47As at 200 and 300oC via a novel amidinate precursor. Samples were determined to experience a severe nucleation delay when deposited directly on native oxides, leading to diminished functionality as a gate insulator due to largely reduced growth per cycle. Aluminium oxide MOS capacitors were prepared by ALD and the electrical characteristics of GaAs, In0.53Ga0.47As and InP capacitors which had been exposed to pre-pulse treatments from triethyl gallium and trimethyl indium were examined, to determine if self-cleaning reactions similar to those of trimethyl aluminium occur for other alkyl precursors. An improved C-V characteristic was observed for GaAs devices indicating an improved interface possibly indicating an improvement of the surface upon pre-pulsing with TEG, conversely degraded electrical characteristics observed for In0.53Ga0.47As and InP MOS devices after pre-treatment with triethyl gallium and trimethyl indium respectively. The electrical characteristics of Al2O3/In0.53Ga0.47As MOS capacitors after in-situ H2/Ar plasma treatment or in-situ ammonium sulphide passivation were investigated and estimates of interface Dit calculated. The use of plasma reduced the amount of interface defects as evidenced in the improved C-V characteristics. Samples treated with ammonium sulphide in the ALD chamber were found to display no significant improvement of the high-κ/III-V interface. HfO2 MOS capacitors were fabricated using two different precursors comparing the industry standard hafnium chloride process with deposition from amide precursors incorporating a ~1nm interface control layer of aluminium oxide and the structural and electrical properties investigated. Capacitors furnished from the chloride process exhibited lower hysteresis and improved C-V characteristics as compared to that of hafnium dioxide grown from an amide precursor, an indication that no etching of the film takes place using the chloride precursor in conjunction with a 1nm interlayer. Optimisation of the amide process was carried out and scaled samples electrically characterised in order to determine if reduced bilayer structures display improved electrical characteristics. Samples were determined to exhibit good electrical characteristics with a low midgap Dit indicative of an unpinned Fermi level

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material