6 resultados para Evidence Based Design (EBD)
em CORA - Cork Open Research Archive - University College Cork - Ireland
A simulation-based design method to transfer surface mount RF system to flip-chip die implementation
Resumo:
The flip-chip technology is a high chip density solution to meet the demand for very large scale integration design. For wireless sensor node or some similar RF applications, due to the growing requirements for the wearable and implantable implementations, flip-chip appears to be a leading technology to realize the integration and miniaturization. In this paper, flip-chip is considered as part of the whole system to affect the RF performance. A simulation based design is presented to transfer the surface mount PCB board to the flip-chip die package for the RF applications. Models are built by Q3D Extractor to extract the equivalent circuit based on the parasitic parameters of the interconnections, for both bare die and wire-bonding technologies. All the parameters and the PCB layout and stack-up are then modeled in the essential parts' design of the flip-chip RF circuit. By implementing simulation and optimization, a flip-chip package is re-designed by the parameters given by simulation sweep. Experimental results fit the simulation well for the comparison between pre-optimization and post-optimization of the bare die package's return loss performance. This design method could generally be used to transfer any surface mount PCB to flip-chip package for the RF systems or to predict the RF specifications of a RF system using the flip-chip technology.
Resumo:
Therapists find it challenging to integrate research evidence into their clinical decision-making because it may involve modifying their existing practices. Although continuing education (CE) programmes for evidence-based practice (EBP) have employed various approaches to increase individual practitioner’s knowledge and skills, these have been shown to have little impact in changing customary behaviours. To date, there has been little attempt to actively engage therapists as collaborators in developing educational processes concerning EBP. The researcher collaborated with seven clinical therapists (one occupational therapist, four physiotherapists and two speech and language therapists) enrolled in a new post-qualification Implementing Evidence in Therapy Practice (IETP) MSc module to monitor and adapt the learning programme over ten weeks. The participating therapists actively engaged in participatory action research (PAR) iterative cycles of reflecting→ planning→ acting→ observing→ reflecting with the researcher. Mixed methods were used to evaluate the IETP module and its influence on therapists’ subsequent engagement in EBP activities. Data were gathered immediately on completion of the module and five months later. Immediate post-module findings revealed four components as being important to the therapists: 1) characteristics of the learning environment; 2) acquisition of relevant EBP skills; 3) nature of the learning process; and 4) acquiring confidence. The two themes and sub-themes which emerged from individual interviews conducted five months post-module expanded on the four components already identified. Theme 1: Experiencing the learning (sub-themes: module organisation; learning is relational; improving the module); and theme 2: Enacting the learning through a new way of being (sub-themes: criticality and reflection; self agency; modelling EBP behaviours; positioning self in an EB work culture). The therapists’ perspectives had by then shifted from that of a learner to that of a clinician constructing a new sense of self as an evidence-based practitioner. Findings from this study underline the importance of the process of socially constructed knowledge and of empowering learners through collaboratively designed continuing education programmes. In the student-driven learning environment, therapists chose repetitive skill-building and authentic problem-solving activities which reflected the complexity of the environments to which they were expected to transfer their learning. These findings have implications for educators designing EBP continuing education programmes, during which students develop professional ways of being.
Resumo:
Can my immediate physical environment affect how I feel? The instinctive answer to this question must be a resounding “yes”. What might seem a throwaway remark is increasingly borne out by research in environmental and behavioural psychology, and in the more recent discipline of Evidence-Based Design. Research outcomes are beginning to converge with findings in neuroscience and neurophysiology, as we discover more about how the human brain and body functions, and reacts to environmental stimuli. What we see, hear, touch, and sense affects each of us psychologically and, by extension, physically, on a continual basis. The physical characteristics of our daily environment thus have the capacity to profoundly affect all aspects of our functioning, from biological systems to cognitive ability. This has long been understood on an intuitive basis, and utilised on a more conscious basis by architects and other designers. Recent research in evidence-based design, coupled with advances in neurophysiology, confirm what have been previously held as commonalities, but also illuminate an almost frightening potential to do enormous good, or alternatively, terrible harm, by virtue of how we make our everyday surroundings. The thesis adopts a design methodology in its approach to exploring the potential use of wireless sensor networks in environments for elderly people. Vitruvian principles of “commodity, firmness and delight” inform the research process and become embedded in the final design proposals and research conclusions. The issue of person-environment fit becomes a key principle in describing a model of continuously-evolving responsive architecture which makes the individual user its focus, with the intention of promoting wellbeing. The key research questions are: What are the key system characteristics of an adaptive therapeutic single-room environment? How can embedded technologies be utilised to maximise the adaptive and therapeutic aspects of the personal life-space of an elderly person with dementia?.
Resumo:
Humans are profoundly affected by the surroundings which they inhabit. Environmental psychologists have produced numerous credible theories describing optimal human environments, based on the concept of congruence or “fit” (1, 2). Lack of person/environment fit can lead to stress-related illness and lack of psychosocial well-being (3). Conversely, appropriately designed environments can promote wellness (4) or “salutogenesis” (5). Increasingly, research in the area of Evidence-Based Design, largely concentrated in the area of healthcare architecture, has tended to bear out these theories (6). Patients and long-term care residents, because of injury, illness or physical/ cognitive impairment, are less likely to be able to intervene to modify their immediate environment, unless this is designed specifically to facilitate their particular needs. In the context of care settings, detailed design of personal space therefore takes on enormous significance. MyRoom conceptualises a personalisable room, utilising sensoring and networked computing to enable the environment to respond directly and continuously to the occupant. Bio-signals collected and relayed to the system will actuate application(s) intended to positively influence user well-being. Drawing on the evidence base in relation to therapeutic design interventions (7), real-time changes in ambient lighting, colour, image, etc. respond continuously to the user’s physiological state, optimising congruence. Based on research evidence, consideration is also given to development of an application which uses natural images (8). It is envisaged that actuation will require machine-learning based on interpretation of data gathered by sensors; sensoring arrangements may vary depending on context and end-user. Such interventions aim to reduce inappropriate stress/ provide stimulation, supporting both instrumental and cognitive tasks.
Resumo:
Practices are routinised behaviours with social and material components and complex relationships over space and time. Practice-based design goes beyond interaction design to consider how these components and their relationships impact on the formation and enactment of a practice, where technology is just one part of the practice. Though situated user-centred design methods such as participatory design are employed for the design of practice, demand exists for additional methods and tools in this area. This paper introduces practice-based personas as an extension of the persona approach popular in interaction design, and demonstrates how a set of practice-based personas was developed for a given domain – academic practice. The three practice-based personas developed here are linked to a catalogue of forty practices, offering designers both a user perspective and a practice perspective when designing for the domain.