2 resultados para Evanescent wave fibre optic sensors

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations of the optical response of subwavelength-structure arrays milled into thin metal films have revealed surprising phenomena, including reports of unexpectedly high transmission of light. Many studies have interpreted the optical coupling to the surface in terms of the resonant excitation of surface plasmon polaritons (SPPs), but other approaches involving composite diffraction of surface evanescent waves (CDEW) have also been proposed. Here we present a series of measurements on very simple one-dimensional subwavelength structures to test the key properties of the surface waves, and compare them to the CDEW and SPP models. We find that the optical response of the silver metal surface proceeds in two steps: a diffractive perturbation in the immediate vicinity (2–3 mu m) of the structure, followed by excitation of a persistent surface wave that propagates over tens of micrometres. The measured wavelength and phase of this persistent wave are significantly shifted from those expected for resonance excitation of a conventional SPP on a pure silver surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical nanofibres (ONFs) are very thin optical waveguides with sub-wavelength diameters. ONFs have very high evanescent fields and the guided light is confined strongly in the transverse direction. These fibres can be used to achieve strong light-matter interactions. Atoms around the waist of an ONF can be probed by collecting the atomic fluorescence coupling or by measuring the transmission (or the polarisation) of the probe beam sent through it. This thesis presents experiments using ONFs for probing and manipulating laser-cooled 87Rb atoms. As an initial experiment, a single mode ONF was integrated into a magneto-optical trap (MOT) and used for measuring the characteristics of the MOT, such as the loading time and the average temperature of the atom cloud. The effect of a near-resonant probe beam on the local temperature of the cold atoms has been studied. Next, the ONF was used for manipulating the atoms in the evanescent fields region in order to generate nonlinear optical effects. Four-wave mixing, ac Stark effect (Autler-Townes splitting) and electromagnetically induced transparency have been observed at unprecedented ultralow power levels. In another experiment, a few-mode ONF, supporting only the fundamental mode and the first higher order mode group, has been used for studying cold atoms. A higher pumping rate of the atomic fluorescence into the higher order fibreguided modes and more interactions with the surrounding atoms for higher order mode evanescent light, when compared to signals for the fundamental mode, have been identified. The results obtained in the thesis are particularly for a fundamental understanding of light-atom interactions when atoms are near a dielectric surface and also for the development of fibre-based quantum information technologies. Atoms coupled to ONFs could be used for preparing intrinsically fibre-coupled quantum nodes for quantum computing and the studies presented here are significant for a detailed understanding of such a system.