5 resultados para Erythrocytic osmotic fragility
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The response of Lactococcus lactis subsp. cremoris NCDO 712 to low water activity (aw) was investigated, both in relation to growth following moderate reductions in the aw and in terms of survival following substantial reduction of the aw with NaCI. Lc.lactis NCDO 712 was capable of growth in the presence of ≤ 4% w/v NaCI and concentrations in excess of 4% w/v were lethal to the cells. The presence of magnesium ions significantly increased the resistance of NCDO 712 to challenge with NaCI and also to challenge with high temperature or low pH. Survival of Lc.lactis NCDO 712 exposed to high NaCI concentrations was growth phase dependent and cells were most sensitive in the early exponential phase of growth. Pre-exposure to 3% w/v NaCI induced limited protection against subsequent challenge with higher NaCI concentrations. The induction was inhibited by chloramphenicol and even when induced, the response did not protect against NaCI concentrations> 10% w/v. When growing at low aw, potassium was accumulated by Lc. lactis NCDO 712 growing at low aw, if the aw was reduced by glucose or fructose, but not by NaCI. Reducing the potassium concentration of chemically defined medium from 20 to 0.5 mM) produced a substantial reduction in the growth rate, if the aw was reduced with NaCI, but not with glucose or fructose. The reduction of the growth rate correlated strongly with a reduction in the cytoplasmic potassium concentration and in cell volume. Addition of the compatible solute glycine betaine, partially reversed the inhibition of growth rate and partially restored the cell volume. The potassium transport system was characterised in cells grown in medium at both high and low aw. It appeared that a single system was present, which was induced approximately two-fold by growth at low aw. Potassium transport was assayed in vitro using cells depleted of potassium; the assay was competitively inhibited by Na+ and by the other monovalent cations NH4+, Li+, and Cs+. There was a strong correlation between the ability of strains of Lc. lactis subsp. lactis and subsp. cremoris to grow at low aw and their ability to accumulate the compatible solute glycine betaine. The Lc. lactis subsp. cremoris strains incapable of growth at NaCI concentrations> 2% w/v did not accumulate glycine betaine when growing at low aw, whereas strains capable of growth at NaCI concentrations up to 4% w/v did. A mutant, extremely sensitive to low aw was isolated from the parent strain Lc. lactis subsp. cremoris MG 1363, a plasmid free derivative of NCDO 712. The parent strain tolerated up to 4% w/v NaCI and actively accumulated glycine betaine when challenged at low aw. The mutant had lost the ability to accumulate glycine betaine and was incapable of growth at NaCI concentrations >2% w/v or the equivalent concentration of glucose. As no other compatible solute seemed capable of substitution for glycine betaine, the data suggest that the traditional; phenotypic speciation of strains on the basis of tolerance to 4% w/v NaCI can be explained as possession or lack of a glycine betaine transport system.
Resumo:
The ability of the Gram-positive foodborne pathogen Listeria monocytogenes to survive and grow in environments of elevated osmolarity can be attributed, at least in part, to the accumulation of a restricted range of low molecular mass solutes compatible with cellular function. Accumulated to high internal concentrations in hyper-saline environments, compatible solutes, either transported into the cell or synthesized de novo, play a dual role: helping to stabilize protein structure and function while also counterbalancing external osmotic strength, thus preventing water loss from the cell and plasmolysis. While previous physiological investigations identified glycine betaine, carnitine, and proline as the principal compatible solutes in the listerial osmostress response, genetic alanysis of the uptake/synthesis systems governing the accumulation of these compounds has, until now, remained largely unexplored. Representing the first genetic analysis of compatible solute accumulation in L. monocytogenes, this thesis describes the molecular characterization of BetL; a highly specific secondary glycine betaine transport system, OpuC; a multicomponent carnitine/glycine betaine transporter, and finally proBA; a two-gene operon encoding the first two enzymes of the listerial proline piosynthesis pathway. In addition to their role in osmotolerance, the potential of each system in contributing to listerial pathogenesis was investigated. While mutations in each gene cluster exhibited dramatic reductions in listerial osmotolerance, OpuC- mutants were additionally shown to exhibit reduced virulence when admisistered via the oral route. This represents the first direct link between the salt stress response and virulence in L. monocytogenes.
Resumo:
Chronic Kidney Disease (CKD), osteoporosis and mild hyponatremia are all prevalent chronic conditions that may coexist and are often under-recognized. Mineral-Bone Disorder begins early in the natural history of CKD and results in complex abnormalities of bone which ultimately confers a well-established increased risk of fragility fractures in End Stage Kidney Disease. Hyponatremia is a novel, usually renal mediated metabolic perturbation, that most commonly occurs independently of the stage of renal dysfunction but which may also predispose to increased fracture risk. The extent -if any- to which either early stages of renal dysfunction or the presence of hyponatremia contribute to fracture occurrence in the general population, independently of osteoporosis, is unclear. Renal transplantation is the treatment of choice for ESKD and although it restores endogenous renal function it typically fails to normalize either the long term cardiovascular or fracture risk. One potential mechanism contributing to these elevated long-term risks and to diminished Health Related Quality of Life is persistent, post-transplant hyperparathyroidism. In this study we retrospectively examine the association of renal function and serum sodium with Bone Mineral Density and fracture occurrence in a retrospective cohort of 1930 female members of the general population who underwent routine DXA scan. We then prospectively recruited a cohort of 90 renal transplant recipients in order to examine the association of post transplant parathyroid hormone (PTH) level with measures of CKD Mineral Bone Disorder, including, DXA Bone Mineral Density, Vascular Calcification (assessed using both abdominal radiography and CT techniques, as well as indirectly by carotid-femoral Pulse Wave Velocity) and Quality of Life (using the Short Form-12 and a PTH specific symptom score). In the retrospective DXA cohort, moderate CKD (eGFR 30-59ml/min/1.73m2) and hyponatremia (<135mmol/L) were associated with fracture occurrence, independently of BMD, with an adjusted Odds Ratio (95% Confidence Interval), of 1.37 (1.0, 1.89) and 2.25 (1.24, 4.09) respectively. In the renal transplant study, PTH was independently associated with the presence of osteoporosis, adjusted Odds Ratio (95% Confidence Interval), 1.15 (per 10ng/ml increment), (1.04, 1.26). The presence of osteoporosis but not PTH was independently associated with measures of vascular calcification, adjusted ß (95% Confidence Interval), 12.45, (1.16, 23.75). Of the eight quality-of-life domains examined, post-transplant PTH (per 10ng/ml increment), was only significantly and independently associated with reduced Physical Functioning, (95% Confidence Interval), 1.12 (1.01, 1.23). CKD and hyponatremia are both common health problems that may contribute to fracture occurrence in the general population, a major on-going public health concern. PTH and decreased Bone Mineral Density may signal sub-optimal long-term outcomes post renal transplantation, influencing bone and vascular health and to a limited extent long term Health Related Quality of Life
Resumo:
The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.
Resumo:
Popular medieval English romances were composed and received within the social consciousness of a distinctly patriarchal culture. This study examines the way in which the dynamic of these texts is significantly influenced by the consequences of female endeavour, in the context of an autonomous feminine presence in both the real and imagined worlds of medieval England, and the authority with which this is presented in various narratives, with a particular focus on Sir Thomas Malory’s Morte Darthur. Chapter One of this study establishes the social and economic positioning of the female in fifteenth-century England, and her capacity for literary engagement; I will then apply this model of female autonomy and authority to a wider discussion of texts contemporary with Malory in Chapters Two and Three, in anticipation of a more detailed study of Le Morte Darthur in Chapters Four and Five. My research explores the female presence and influence in these texts according to certain types: namely the lover, the victim, the ruler, and the temptress. In the case of Malory, the crux of my observations centres on the paradox of the capacity for power in perceived vulnerability, incorporating the presentation of women in this patriarchal culture as being vulnerable and in need of protection, while simultaneously acting as a significant threat to chivalric society by manipulating this apparent fragility, to the detriment of the chivalric knight. In this sense, women can be perceived as being an architect of the romance world, while simultaneously acting as its saboteur. In essence, this study offers an innovative interpretation of female autonomy and authority in medieval romance, presenting an exploration of the physical, intellectual, and emotional placement of women in both the historical and literary worlds of fifteenth-century England, while examining the implications of female conduct on Malory’s Arthurian society.