3 resultados para Epithelial proliferation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is the most common cause of death due to malignancy in nonsmokers in the western world. In 1995 there were 1,757 cases of colon cancer in Ireland. Most colon cancer is sporadic, however ten percent of cases occur where there is a previous family history of the disease. In an attempt to understand the tumorigenic pathway in Irish colon cancer patients, a number of genes associated with colorectal cancer development were analysed in Irish sporadic and HNPCC colon cancer patients. The hereditary forms of colon cancer include Familial adenomatous polyposis coli (FAP) and Hereditary Non-Polyposis Colon Cancer (HNPCC). Genetic analysis of the gene responsible for FAP, (the APC gene) has been previously performed on Irish families, however the genetic analysis of HNPCC families is limited. In an attempt to determine the mutation spectrum in Irish HNPCC pedigrees, the hMSH2 and hMLHl mismatch repair genes were screened in 18 Irish HNPCC families. Using SSCP analysis followed by DNA sequencing, five mutations were identified, four novel and a previously reported mutation. In families where a mutation was detected, younger asyptomatic members were screened for the presence of the predisposing mutation (where possible). Detection of mutations is particularly important for the identification of at risk individuals as the early diagnosis of cancer can vastly improve the prognosis. The sensitive and efficient detection of multiple different mutations and polymorphisms in DNA is of prime importance for genetic diagnosis and the identification of disease genes. A novel mutation detection technique has recently been developed in our laboratory. In order to assess the efficacy and application of the methodology in the analysis of cancer associated genes, a protocol for the analysis of the K-ras gene was developed and optimised. Matched normal and tumour DNA from twenty sporadic colon cancer patients was analysed for K-ras mutations using the Glycosylase Mediated Polymorphism Detection technique. Five mutations of the K-ras gene were detected using this technology. Sequencing analysis verified the presence of the mutations and SSCP analysis of the same samples did not identify any additional mutations. The GMPD technology proved to be highly sensitive, accurate and efficient in the identification of K-ras gene mutations. In order to investigate the role of the replication error phenomenon in Irish colon cancer, 3 polyA tract repeat loci were analysed. The repeat loci included a 10 bp intragenic repeat of the TGF-β-RII gene. TGF-β-RII is involved in the TGF-β epithelial cell growth pathway and mutation of the gene is thought to play a role in cell proliferation and tumorigenesis. Due to the presence of a repeat sequence within the gene, TGFB-RII defects are associated with tumours that display the replication error phenomenon. Analysis of the TGF-β-RII 10 bp repeat failed to identify mutations in any colon cancer patients. Analysis of the Bat26 and Bat 40 polyA repeat sequences in the sporadic and HNPCC families revealed that instability is associated with HNPCC tumours harbouring mismatch repair defects and with 20 % of sporadic colon cancer tumours. No correlation between K-ras gene mutations and the RER+ phenotype was detected in sporadic colon cancer tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is a complex and highly organised immune response to microbes and tissue injury. Recognition of noxious stimuli by pathogen recognition receptor families including Toll-like receptors results in the expression of hundreds of genes that encode cytokines, chemokines, antimicrobials and regulators of inflammation. Regulation of TLR activation responses is controlled by TLR tolerance which induces a global change in the cellular transcriptional expression profile resulting in gene specific suppression and induction of transcription. In this thesis the plasticity of TLR receptor tolerance is investigated using an in vivo, transcriptomics and functional approach to determine the plasticity of TLR tolerance in the regulation of inflammation. Firstly, using mice deficient in the negative regulator of TLR gene transcription, Bcl-3 (Bcl-3-/-) in a model of intestinal inflammation, we investigated the role of Bcl-3 in the regulation of intestinal inflammatory responses. Our data revealed a novel role for Bcl-3 in the regulation of epithelial cell proliferation and regeneration during intestinal inflammation. Furthermore this data revealed that increased Bcl-3 expression contributes to the development of inflammatory bowel disease (IBD). Secondly, we demonstrate that lipopolysaccharide tolerance is transient and recovery from LPS tolerance results in polarisation of macrophages to a previously un-described hybrid state (RM). In addition, we identified that RM cells have a unique transcriptional profile with suppression and induction of genes specific to this polarisation state. Furthermore, using a functional approach to characterise the outcomes of TLR tolerance plasticity, we demonstrate that cytokine transcription is uncoupled from cytokine secretion in macrophages following recovery from LPS tolerance. Here we demonstrate a novel mechanism of regulation of TLR tolerance through suppression of cytokine secretion in macrophages. We show that TNF-α is alternatively trafficked towards a degradative intracellular compartment. These studies demonstrate that TLR tolerance is a complex immunological response with the plasticity of this state playing an important role in the regulation of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytokine-driven signalling shapes immune homeostasis and guides inflammatory responses mainly through induction of specific gene expression programmes both within and outside the immune cell compartment. These transcriptional outputs are often amplified via cytokine synergy, which sets a stimulatory threshold that safeguards from exacerbated inflammation and immunopathology. In this study, we investigated the molecular mechanisms underpinning synergy between two pivotal Th1 cytokines, IFN-γ and TNF-α, in human intestinal epithelial cells. These two proinflammatory mediators induce a unique state of signalling and transcriptional synergy implicated in processes such as antiviral and antitumour immunity, intestinal barrier and pancreatic β-cell dysfunction. Since its discovery more than 30 years ago, this biological phenomenon remains, however, only partially defined. Here, using a functional genomics approach including RNAi perturbation screens and small-molecule inhibitors, we identified two new regulators of IFN-γ/TNF-α-induced chemokine and antiviral gene and protein expression, a Bcl-2 protein BCL-G and a histone demethylase UTX. We also discovered that IFN-γ/TNF-α synergise to trigger a coordinated shutdown of major receptor tyrosine kinases expression in colon cancer cells. Together, these findings extend our current understanding of how IFN-γ/TNF-α synergy elicits qualitatively and quantitatively distinct outputs in the intestinal epithelium. Given the well-documented role of this synergistic state in immunopathology of various disorders, our results may help to inform the identification of high quality and biologically relevant druggable targets for diseases characterised by an IFN-γ/TNF-α high immune signature