2 resultados para Environmental scanning electron microscopy (ESEM)

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wheat (Triticum aestivum L.) has a long tradition as a raw material for the production of malt and beer. While breeding and cultivation efforts for barley have been highly successful in creating agronomically and brew- technical optimal specialty cultivars that have become well established as brewing barley varieties, the picture is completely different for brewing wheat. An increasing wheat beer demand results in a rising amount of raw material. Wheat has been - and still is – grown almost exclusively for the baking industry. It is this high demand that defines most of the wheat breeding objectives; and these objectives are generally not favourable in brewing industry. It is of major interest to screen wheat varieties for brewing processability and to give more focus to wheat as a brewing cereal. To obtain fast and reliable predications about the suitability of wheat cultivars a new mathematical method was developed in this work. The method allows a selection based on generally accepted quality characteristics. As selection criteria the parameters raw protein, soluble nitrogen, Kolbach index, extract and viscosity were chosen. During a triannual cultivation series, wheat varieties were evaluated on their suitability for brewing as well as stability to environmental conditions. To gain a fundamental understanding of the complex malting process, microstructural changes were evaluated and visualized by confocal laser scanning and scanning electron microscopy. Furthermore, changes observed in the micrographs were verified and endorsed by metabolic changes using established malt attributes. The degradation and formation of proteins during malting is essential for the final beer quality. To visualise fundamental protein changes taking place during malting, samples of each single process step were analysed and fractioned according their solubility. Protein fractions were analysed using a Lab-on-a-chip technique as well as OFFgel analysis. In general, a different protein distribution of wheat compared to barley or oat could be confirmed. During the malting process a degradation of proteins to small peptides and amino acids could be observed in all four Osborn fractions. Furthermore, in this study a protein profiling was performed to evaluate changes during the mashing process as well as the influence of grist composition. Differences in specific protein peaks and profile were detected for all samples during mashing. This study investigated the suitability of wheat for malting and brewing industry and closed the scientifical gap of amylolytic, cytolytic and proteolytic changes during malting and mashing.