2 resultados para Enteric
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Advances in culture independent technologies over the last decade have highlighted the pivotal role which the gut microbiota plays in maintaining human health. Conversely, perturbations to the composition or actions of the ‘normal/functioning’ microbiota have been frequently associated with the pathogenesis of several disease states. Therefore the selective modulation of enteric microbial communities represents a viable target for the development of novel treatments for such diseases. Notably, while bovine whey proteins and exercise have been shown to positively influence several physiological processes, such as energy balance, their effect on the composition or functionality of the gut microbiota remains largely unknown. In this thesis, a variety of ex vivo, murine and human models are used in conjunction with high-throughput DNA sequencing-based analysis to provide valuable and novel insights into the impact of both whey proteins and exercise on enteric microbial communities. Overall the results presented in this thesis highlight that the consumption both whey protein isolate (WPI), and individual component proteins of whey such as bovine serum albumin (BSA) and lactoferrin, reduce high fat diet associated body weight gain and are associated with beneficial alterations within the murine gut microbiota. Although the impact of exercise on enteric microbial communities remains less clear, it may be that longer term investigations are required for the true effect of exercise on the gut microbiota to be fully elucidated.
Resumo:
Leptin ameliorates the prosecretory and prokinetic effects of the pro-inflammatory cytokine interleukin-6 on rat colon. Leptin also suppresses the neurostimulatory effects of irritable bowel syndrome plasma, which has elevated concentrations of interleukin-6, on enteric neurons. This may indicate a regulatory role for leptin in immune-mediated bowel dysfunction. In addition to its role in regulating energy homeostasis, the adipokine leptin modifies gastrointestinal (GI) function. Indeed, leptin-resistant obese humans and leptin-deficient obese mice exhibit altered GI motility. In the functional GI disorder irritable bowel syndrome (IBS), circulating leptin concentrations are reported to differ from those of healthy control subjects. Additionally, IBS patients display altered cytokine profiles, including elevated circulating concentrations of the pro-inflammatory cytokine interleukin-6 (IL-6), which bears structural homology and similarities in intracellular signalling to leptin. This study aimed to investigate interactions between leptin and IL-6 in colonic neurons and their possible contribution to IBS pathophysiology. The functional effects of leptin and IL-6 on colonic contractility and absorptosecretory function were assessed in organ baths and Ussing chambers in Sprague–Dawley rat colon. Calcium imaging and immunohistochemical techniques were used to investigate the neural regulation of GI function by these signalling molecules. Our findings provide a neuromodulatory role for leptin in submucosal neurons, where it inhibited the stimulatory effects of IL-6. Functionally, this translated to suppression of IL-6-evoked potentiation of veratridine-induced secretory currents. Leptin also attenuated IL-6-induced colonic contractions, although it had little direct effect on myenteric neurons. Calcium responses evoked by IBS plasma in both myenteric and submucosal neurons were also suppressed by leptin, possibly through interactions with IL-6, which is elevated in IBS plasma. As leptin has the capacity to ameliorate the neurostimulatory effects of soluble mediators in IBS plasma and modulated IL-6-evoked changes in bowel function, leptin may have a role in immune-mediated bowel dysfunction in IBS patients.