6 resultados para Electrochemical etching
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
An examination of the selective etching mechanism of a 1-alkanethiol self-assembled monolayer (SAM) covered Au{111} surface using in-situ atomic force microscopy (AFM) and molecular resolution scanning tunnelling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au{111} surface and typically contains nanoscale non-uniformities such as pinholes, domain boundaries and monatomic depressions. During etching in a ferri/ferrocyanide water-based etchant, selective and preferential etching occurs at SAM covered Au(111) terrace and step edges where a lower SAM packing density is observed, resulting in triangular islands being relieved. The triangular islands are commensurate with the Au(111) lattice with their long edges parallel to its [11-0] direction. Thus, SAM etching is selective and preferential attack is localized to defects and step edges at sites of high molecular density contrast.
Resumo:
The surface properties of InP electrodes were examined following anodization in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution, revealed surface pitting and TEM micrographs revealed the porous nature of the film formed on top of the pitted substrate. After anodization in the KOH electrolyte, TEM images revealed that a porous layer extending 500 nm into the substrate had been formed. Analysis of the composition of the anodic products indicates the presence of In2S3 in films grown in (NH4)2S and an In2O3 phase within the porous network formed in KOH.
An investigation by AFM and TEM of the mechanism of anodic formation of nanoporosity in n-InP in KOH
Resumo:
The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.
Resumo:
The anodic behavior of InP in 1 mol dm-3 KOH was investigated and compared with its behavior at higher concentrations of KOH. At concentrations of 2 mol dm-3 KOH or greater, selective etching of InP occurs leading to thick porous InP layers near the surface of the sustrate. In contrast, in 1 mol dm-3 KOH, no such porous layers are formed but a thin surface film is formed at potentials in the range 0.6 V to 1.3 V. The thickness of this film was determined by spectroscopic ellipsometry as a function of the upper potential and the measured film thickness corresponds to the charge passed up to a potential of 1.0 V. Anodization to potentials above 1.5 V in 1 mol dm- 3 KOH results in the growth of thick, porous oxide films (~ 1.2 µm). These films are observed to crack, ex-situ, due to shrinkage after drying in ambient air. Comparisons between the charge density and film thickness measurements indicate a porosity of approximately 77% for such films.
Resumo:
Pores are formed electrochemically in n-InP in KCl electrolytes with concentrations of 2 mol dm-3 or greater. The pore morphology is similar to what is seen in other halide-based electrolytes. At low potentials, crystallographically oriented (CO) pores are formed. At higher potentials, current-line oriented (CLO) pores are formed. Crystallographically oriented pore walls are observed for both pore morphologies. When formed at a constant current, potential oscillations are observed which have been correlated to oscillations in the pore width. The CLO pore wall smoothness and overall uniformity increase as KCl concentration is increased. The porous structures formed in KCl compare favourably with those formed in the more acidic or alkaline electrolytes that are typically used to form these structures.
Resumo:
Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.