4 resultados para Electrical resistivity tomography (ERT)
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis is concerned with several aspects of the chemistry of iron compounds. The preparation (with particular emphasis on coprecipitation and sol-gel techniques) and processing of ferrites are discussed. Chapter 2 describes the synthesis of Ni-Zn ferrites with various compositions by three methods. These methods include coprecipitation and sol-gel techniques. The Ni-Zn ferrites were characterised by powder X-ray diffactometry (PXRD), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), Mössbauer spectroscopy and resistivity measurements. The results for the corresponding ferrites prepared by each method are compared. Chapter 3 reports the sol-gel preparation of a lead borosilicate glass and its addition to Ni-Zn ferrites prepared by the sol-gel method in Chapter 2. The glass-ferrites formed were analysed by the same techniques employed in Chapter 2. Alterations in the microstructure, magnetic and electronic properties of the ferrites due to glass addition are described. Chapter 4 introduces compounds containing Fe-O-B, Fe-O-Si or B-O-Si linkages. The synthesis and characterisation of compounds containing Fe-O-B units are described. The structure of [Fe(SALEN)]2O.CH2Cl2 (17), used in attempts to prepare compounds with Fe-O-Si bonds, was determined by X-ray crystallography. Chapter 4 also details the synthesis of three new borosilicate compounds containing ferrocenyl groups, i.e. [FcBO)2(OSiBut2)2] (19), [(FcBO)2(OSiPh2)2] (20) and [FcBOSiPh3] (21). The structure of (19) was determined by X-ray Crystallographic analysis. Chapter 5 reviews the intercalation properties of the layered host compound iron oxychloride (FeOCI). Intercalation compounds prepared with the microwave dielectric heating technique are also discussed. The syntheses of intercalation compounds by the microwave method with FeOCI as host and ferrocene, ferrocenylboronic acid and 4-aminopyridine as guest species are described. Characterisation of these compounds by powder X-ray diffractometry (PXRD) and M{ssbauer spectroscopy is reported. The attempted synthesis of an intercalation compound with the borosilicate compound (19) as guest species is discussed. Appendices A-E describe the theory and instrumentation involved in powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM0, vibrating sample magnetometry (VSM), Mössbauer spectroscopy and electrical resistivity measurements, respectively. Appendix F details the attempted syntheses of compounds with Fe-O-B and Fe-O-Si linkages.
Resumo:
One-dimensional semiconductor nanowires are considered to be promising materials for future nanoelectronic applications. However, before these nanowires can be integrated into such applications, a thorough understanding of their growth behaviour is necessary. In particular, methods that allow the control over nanowire growth are deemed especially important as it is these methods that will enable the control of nanowire dimensions such as length and diameter (high aspect ratios). The production of nanowires with high-aspect ratios is vital in order to take advantage of the unique properties experienced at the nanoscale, thus allowing us to maximise their use in devices. Additionally, the development of low-resistivity interconnects is desirable in order to connect such nanowires in multi-nanowire components. Consequently, this thesis aims to discuss the synthesis and characterisation of germanium (Ge) nanowires and platinum (Pt) interconnects. Particular emphasis is placed on manipulating the nanowire growth kinetics to produce high aspect ratio structures. The discussion of Pt interconnects focuses on the development of low-resistivity devices and the electrical and structural analysis of those devices. Chapter 1 reviews the most critical aspects of Ge nanowire growth which must be understood before they can be integrated into future nanodevices. These features include the synthetic methods employed to grow Ge nanowires, the kinetic and thermodynamic aspects of their growth and nanowire morphology control. Chapter 2 outlines the experimental methods used to synthesise and characterise Ge nanowires as well as the methods used to fabricate and analyse Pt interconnects. Chapter 3 discusses the control of Ge nanowire growth kinetics via the manipulation of the supersaturation of Ge in the Au/Ge binary alloy system. This is accomplished through the use of bi-layer films, which pre-form Au/Ge alloy catalysts before the introduction of the Ge precursor. The growth from these catalysts is then compared with Ge nanowire growth from standard elemental Au seeds. Nanowires grown from pre-formed Au/Ge alloy seeds demonstrate longer lengths and higher growth rates than those grown from standard Au seeds. In-situ TEM heating on the Au/Ge bi-layer films is used to support the growth characteristics observed. Chapter 4 extends the work of chapter 3 by utilising Au/Ag/Ge tri-layer films to enhance the growth rates and lengths of Ge nanowires. These nanowires are grown from Au/Ag/Ge ternary alloy catalysts. Once again, the supersaturation is influenced, only this time it is through the simultaneous manipulation of both the solute concentration and equilibrium concentration of Ge in the Au/Ag/Ge ternary alloy system. The introduction of Ag to the Au/Ge binary alloy lowers the equilibrium concentration, thus increasing the nanowire growth rate and length. Nanowires with uniform diameters were obtained via synthesis from AuxAg1-x alloy nanoparticles. Manifestation of the Gibbs-Thomson effect, resulting from the dependence of the mean nanowire length as a function of diameter, was observed for all of the nanowires grown from the AuxAg1-x nanoparticles. Finally, in-situ TEM heating was used to support the nanowire growth characteristics. Chapter 5 details the fabrication and characterisation of Pt interconnects deposited by electron beam induced deposition of two different precursors. The fabrication is conducted inside a dual beam FIB. The electrical and structural characteristics of interconnects deposited from a standard organometallic precursor and a novel carbon-free precursor are compared. The electrical performance of the carbon-free interconnects is shown to be superior to that of the organometallic devices and this is correlated to the structural composition of both interconnects via in-situ TEM heating and HAADF-STEM analysis. Annealing of the interconnects is carried out under two different atmospheres in order to reduce the electrical resistivity even further. Finally, chapter 6 presents some important conclusions and summarises each of the previous chapters.
Resumo:
Comprehensive analysis of the electrical properties, structure and composition of Pt interconnects, developed via mask-less, electron beam induced deposition of the carbon-free Pt precursor, Pt(PF3)4, is presented. The results demonstrate significantly improved electrical performance in comparison with that generated from the standard organometallic precursor, (CH3)3Pt(CpCH3). In particular, the Pt interconnects exhibited perfect ohmic behavior and resistivity that can be diminished to 0.24 × 10−3 Ω cm, which is only one order of magnitude higher than bulk Pt, in comparison to 0.2 Ω cm for the standard carbon-containing interconnects. A maximum current density of 1.87 × 107 A cm−2 was achieved for the carbon-free Pt, compared to 9.44 × 105 A cm−2 for the standard Pt precursor. The enhanced electrical properties of the as-deposited materials can be explained by the absence of large amounts of carbon impurities, and their further improvement by postdeposition annealing in N2. In-situ TEM heating experiments confirmed that the annealing step induces sintering of the Pt nanocrystals and improved crystallinity, which contributes to the enhanced electrical performance. Alternative annealing under reducing conditions resulted in improved performance of the standard Pt interconnects, while the carbon-free deposit suffered electrical and structural breakage due to formation of larger Pt islands
Resumo:
Electron beam-induced deposition (EBID) is a direct write process where an electron beam locally decomposes a precursor gas leaving behind non-volatile deposits. It is a fast and relatively in-expensive method designed to develop conductive (metal) or isolating (oxide) nanostructures. Unfortunately the EBID process results in deposition of metal nanostructures with relatively high resistivity because the gas precursors employed are hydrocarbon based. We have developed deposition protocols using novel gas-injector system (GIS) with a carbon free Pt precursor. Interconnect type structures were deposited on preformed metal architectures. The obtained structures were analysed by cross-sectional TEM and their electrical properties were analysed ex-situ using four point probe electrical tests. The results suggest that both the structural and electrical characteristics differ significantly from those of Pt interconnects deposited by conventional hydrocarbon based precursors, and show great promise for the development of low resistivity electrical contacts.