3 resultados para Electric energy systems
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Power systems require a reliable supply and good power quality. The impact of power supply interruptions is well acknowledged and well quantified. However, a system may perform reliably without any interruptions but may have poor power quality. Although poor power quality has cost implications for all actors in the electrical power systems, only some users are aware of its impact. Power system operators are much attuned to the impact of low power quality on their equipment and have the appropriate monitoring systems in place. However, over recent years certain industries have come increasingly vulnerable to negative cost implications of poor power quality arising from changes in their load characteristics and load sensitivities, and therefore increasingly implement power quality monitoring and mitigation solutions. This paper reviews several historical studies which investigate the cost implications of poor power quality on industry. These surveys are largely focused on outages, whilst the impact of poor power quality such as harmonics, short interruptions, voltage dips and swells, and transients is less well studied and understood. This paper examines the difficulties in quantifying the costs of poor power quality, and uses the chi-squared method to determine the consequences for industry of power quality phenomenon using a case study of over 40 manufacturing and data centres in Ireland.
Resumo:
A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.
Resumo:
The use of Cyber Physical Systems (CPS) to optimise industrial energy systems is an approach which has the potential to positively impact on manufacturing sector energy efficiency. The need to obtain data to facilitate the implementation of a CPS in an industrial energy system is however a complex task which is often implemented in a non-standardised way. The use of the 5C CPS architecture has the potential to standardise this approach. This paper describes a case study where data from a Combined Heat and Power (CHP) system located in a large manufacturing company was fused with grid electricity and gas models as well as a maintenance cost model using the 5C architecture with a view to making effective decisions on its cost efficient operation. A control change implemented based on the cognitive analysis enabled via the 5C architecture implementation has resulted in energy cost savings of over €7400 over a four-month period, with energy cost savings of over €150,000 projected once the 5C architecture is extended into the production environment.