6 resultados para Early Warning and Nowcasting Approaches for Water Quality in Riverine and Coastal Systems
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
An aim of proactive risk management strategies is the timely identification of safety related risks. One way to achieve this is by deploying early warning systems. Early warning systems aim to provide useful information on the presence of potential threats to the system, the level of vulnerability of a system, or both of these, in a timely manner. This information can then be used to take proactive safety measures. The United Nation’s has recommended that any early warning system need to have four essential elements, which are the risk knowledge element, a monitoring and warning service, dissemination and communication and a response capability. This research deals with the risk knowledge element of an early warning system. The risk knowledge element of an early warning system contains models of possible accident scenarios. These accident scenarios are created by using hazard analysis techniques, which are categorised as traditional and contemporary. The assumption in traditional hazard analysis techniques is that accidents are occurred due to a sequence of events, whereas, the assumption of contemporary hazard analysis techniques is that safety is an emergent property of complex systems. The problem is that there is no availability of a software editor which can be used by analysts to create models of accident scenarios based on contemporary hazard analysis techniques and generate computer code that represent the models at the same time. This research aims to enhance the process of generating computer code based on graphical models that associate early warning signs and causal factors to a hazard, based on contemporary hazard analyses techniques. For this purpose, the thesis investigates the use of Domain Specific Modeling (DSM) technologies. The contributions of this thesis is the design and development of a set of three graphical Domain Specific Modeling languages (DSML)s, that when combined together, provide all of the necessary constructs that will enable safety experts and practitioners to conduct hazard and early warning analysis based on a contemporary hazard analysis approach. The languages represent those elements and relations necessary to define accident scenarios and their associated early warning signs. The three DSMLs were incorporated in to a prototype software editor that enables safety scientists and practitioners to create and edit hazard and early warning analysis models in a usable manner and as a result to generate executable code automatically. This research proves that the DSM technologies can be used to develop a set of three DSMLs which can allow user to conduct hazard and early warning analysis in more usable manner. Furthermore, the three DSMLs and their dedicated editor, which are presented in this thesis, may provide a significant enhancement to the process of creating the risk knowledge element of computer based early warning systems.
Resumo:
At a time when technological advances are providing new sensor capabilities, novel network capabilities, long-range communications technologies and data interpreting and delivery formats via the World Wide Web, we never before had such opportunities to sense and analyse the environment around us. However, the challenges exist. While measurement and detection of environmental pollutants can be successful under laboratory-controlled conditions, continuous in-situ monitoring remains one of the most challenging aspects of environmental sensing. This paper describes the development and test of a multi-sensor heterogeneous real-time water monitoring system. A multi-sensor system was deployed in the River Lee, County Cork, Ireland to monitor water quality parameters such as pH, temperature, conductivity, turbidity and dissolved oxygen. The R. Lee comprises of a tidal water system that provides an interesting test site to monitor. The multi-sensor system set-up is described and results of the sensor deployment and the various challenges are discussed.
Resumo:
A proactive risk management strategy seeks to prevent accidents from taking place and maintain the safety of a system. In this context, the task of identifying and disseminating early warning signs and signals is among the most important. The problem is that warning signs that are present before an accident takes place are often being overlooked and not picked up or identified as warning signs. If these warning signs were responded to, then an accident may be averted. Accidents occuring in the critical domain of a drinking water treatments works can have serious implications for the public health of consumers of the water supplied. Realising and comprehending early warning signs is a major challenge for the domain of systems safety and especially in the domain of a water treatment works. The approaches that are typically used to enhance the realisation, comprehension and dissemination of early warning signs in the water treatment domain in Ireland mainly involves the creation of accident scenarios, the use of monitoring data and procedures for the dissemination of warnings. While all of these approaches are all useful to inform the mental or process models of possible accident scenarios, nevertheless, accidents are still occurring in this domain. Therefore, a new approach to enhance the comprehension of and effective dissemination of early warning signs is required in order to improve safety and proactive risk management strategies. The contributions of this thesis is the provision of a set of attributes associated with the early warning sign concept that provides meaningful data on the early warning signs and allows recipients to better comprehend them. The values of these attributes were customised for application in the water treatment domain. This research proves that early warning signs at a water treatment works received with information on their attributes are comprehended and communicated more effectively and efficiently than the usual pragmatic approach and thereby improves the safety and proactive risk management strategies.
Resumo:
Anthropogenic pollutant chemicals pose a major threat to aquatic organisms. There is a need for more research on emerging categories of environmental chemicals such as nanomaterials, endocrine disruptors and pharmaceuticals. Proteomics offers options and advantages for early warning of alterations in environmental quality by detecting sub-lethal changes in sentinel species such as the mussel, Mytilus edulis. This thesis aimed to compare the potential of traditional biomarkers (such as enzyme activity measurement) and newer redox proteomic approaches. Environmental proteomics, especially a redox proteomics toolbox, may be a novel way to study pollutant effects on organisms which can also yield information on risks to human health. In particular, it can probe subtle biochemical changes at sub-lethal concentrations and thus offer novel insights to toxicity mechanisms. In the first instance, the present research involved a field-study in three stations in Cork Harbour, Ireland (Haulbowline, Ringaskiddy and Douglas) compared to an outharbour control site in Bantry Bay, Ireland. Then, further research was carried out to detect effects of anthropogenic pollution on selected chemicals. Diclofenac is an example of veterinary and human pharmaceuticals, an emerging category of chemical pollutants, with potential to cause serious toxicity to non-target organisms. A second chemical used for this study was copper which is a key source of contamination in marine ecosystems. Thirdly, bisphenol A is a major anthropogenic chemical mainly used in polycarbonate plastics manufacturing that is widespread in the environment. It is also suspected to be an endocrine disruptor. Effects on the gill, the principal feeding organ of mussels, were investigated in particular. Effects on digestive gland were also investigated to compare different outcomes from each tissue. Across the three anthropogenic chemicals studied (diclofenac, copper and bisphenol A), only diclofenac exposure did not show any significant difference towards glutathione transferase (GST) responses. Meanwhile, copper and bisphenol A significantly increased GST in gill. Glutathione reductase (GR) enzyme analysis revealed that all three chemicals have significant responses in gill. Catalase activity showed significant differences in digestive gland exposed to diclofenac and gills exposed to bisphenol A. This study focused then on application of redox proteomics; the study of the oxidative modification of proteins, to M. edulis. Thiol proteins were labelled with 5-iodoacetamidofluorescein prior to one-dimensional and two-dimensional electrophoresis. This clearly revealed some similarities on a portion of the redox proteome across chemical exposures indicating where toxicity mechanism may be common and where effects are unique to a single treatment. This thesis documents that proteomics is a robust tool to provide valuable insights into possible mechanisms of toxicity of anthropogenic contaminants in M. edulis. It is concluded that future research should focus on gill tissue, on protein thiols and on key individual proteins discovered in this study such as calreticulin and arginine kinase which have not previously been considered as biomarkers in aquatic toxicology prior to this study.
Resumo:
Many studies have shown the considerable potential for the application of remote-sensing-based methods for deriving estimates of lake water quality. However, the reliable application of these methods across time and space is complicated by the diversity of lake types, sensor configuration, and the multitude of different algorithms proposed. This study tested one operational and 46 empirical algorithms sourced from the peer-reviewed literature that have individually shown potential for estimating lake water quality properties in the form of chlorophyll-a (algal biomass) and Secchi disc depth (SDD) (water transparency) in independent studies. Nearly half (19) of the algorithms were unsuitable for use with the remote-sensing data available for this study. The remaining 28 were assessed using the Terra/Aqua satellite archive to identify the best performing algorithms in terms of accuracy and transferability within the period 2001–2004 in four test lakes, namely Vänern, Vättern, Geneva, and Balaton. These lakes represent the broad continuum of large European lake types, varying in terms of eco-region (latitude/longitude and altitude), morphology, mixing regime, and trophic status. All algorithms were tested for each lake separately and combined to assess the degree of their applicability in ecologically different sites. None of the algorithms assessed in this study exhibited promise when all four lakes were combined into a single data set and most algorithms performed poorly even for specific lake types. A chlorophyll-a retrieval algorithm originally developed for eutrophic lakes showed the most promising results (R2 = 0.59) in oligotrophic lakes. Two SDD retrieval algorithms, one originally developed for turbid lakes and the other for lakes with various characteristics, exhibited promising results in relatively less turbid lakes (R2 = 0.62 and 0.76, respectively). The results presented here highlight the complexity associated with remotely sensed lake water quality estimates and the high degree of uncertainty due to various limitations, including the lake water optical properties and the choice of methods.
Resumo:
The observation chart is for many health professionals (HPs) the primary source of objective information relating to the health of a patient. Information Systems (IS) research has demonstrated the positive impact of good interface design on decision making and it is logical that good observation chart design can positively impact healthcare decision making. Despite the potential for good observation chart design, there is a paucity of observation chart design literature, with the primary source of literature leveraging Human Computer Interaction (HCI) literature to design better charts. While this approach has been successful, this design approach introduces a gap between understanding of the tasks performed by HPs when using charts and the design features implemented in the chart. Good IS allow for the collection and manipulation of data so that it can be presented in a timely manner that support specific tasks. Good interface design should therefore consider the specific tasks being performed prior to designing the interface. This research adopts a Design Science Research (DSR) approach to formalise a framework of design principles that incorporates knowledge of the tasks performed by HPs when using observation charts and knowledge pertaining to visual representations of data and semiology of graphics. This research is presented in three phases, the initial two phases seek to discover and formalise design knowledge embedded in two situated observation charts: the paper-based NEWS chart developed by the Health Service Executive in Ireland and the electronically generated eNEWS chart developed by the Health Information Systems Research Centre in University College Cork. A comparative evaluation of each chart is also presented in the respective phases. Throughout each of these phases, tentative versions of a design framework for electronic vital sign observation charts are presented, with each subsequent iteration of the framework (versions Alpha, Beta, V0.1 and V1.0) representing a refinement of the design knowledge. The design framework will be named the framework for the Retrospective Evaluation of Vital Sign Information from Early Warning Systems (REVIEWS). Phase 3 of the research presents the deductive process for designing and implementing V0.1 of the framework, with evaluation of the instantiation allowing for the final iteration V1.0 of the framework. This study makes a number of contributions to academic research. First the research demonstrates that the cognitive tasks performed by nurses during clinical reasoning can be supported through good observation chart design. Secondly the research establishes the utility of electronic vital sign observation charts in terms of supporting the cognitive tasks performed by nurses during clinical reasoning. Third the framework for REVIEWS represents a comprehensive set of design principles which if applied to chart design will improve the usefulness of the chart in terms of supporting clinical reasoning. Fourth the electronic observation chart that emerges from this research is demonstrated to be significantly more useful than previously designed charts and represents a significant contribution to practice. Finally the research presents a research design that employs a combination of inductive and deductive design activities to iterate on the design of situated artefacts.