3 resultados para EMISSION DISPLAY APPLICATIONS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical-structural characteristics of the direct optical band-gap semiconducting series of surfactant template-mediated laminar (CdS)x(CdCl2)y(CnH2n+4N)z nanocomposites are reported. X-ray diffraction measurements of the nanocomposites exhibited interlaminar distances in the range 2.9-3.6 nm with observations of eighth order {0 0 l} diffraction planes indicative of a high degree of laminarity and crystallographic order. Diffuse reflectance measurements have determined that the profile of their emission spectrum is that of a direct band-gap with absorption edges in the range 2.11-2.40 eV, depending on the CdS mole fraction in the nanocomposite. Photoluminescence (PL) excitation and time-resolved PL spectroscopies give an estimate of the maximum relative absorbance of the nanocomposites at ∼420 nm while the minimum was observed at ∼560 nm. The main emission was observed at ∼700 nm with emission from doubly ionized sulphur vacancies observed at ∼615 nm at room temperature. The CdS-containing nanocomposite is thus a surfactant-mediated modular system with variable band-gap energy emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actinin and spectrin proteins are members of the Spectrin Family of Actin Crosslinking Proteins. The importance of these proteins in the cytoskeleton is demonstrated by the fact that they are common targets for disease causing mutations. In their most prominent roles, actinin and spectrin are responsible for stabilising and maintaining the muscle architecture during contraction, and providing shape and elasticity to the red blood cell in circulation, respectively. To carry out such roles, actinin and spectrin must possess important mechanical and physical properties. These attributes are desirable when choosing a building block for protein-based nanoconstruction. In this study, I assess the contribution of several disease-associated mutations in the actinin-1 actin binding domain that have recently been linked to a rare platelet disorder, congenital macrothrombocytopenia. I investigate the suitability of both actinin and spectrin proteins as potential building blocks for nanoscale structures, and I evaluate a fusion-based assembly strategy to bring about self-assembly of protein nanostructures. I report that the actinin-1 mutant proteins display increased actin binding compared to WT actinin-1 proteins. I find that both actinin and spectrin proteins exhibit enormous potential as nano-building blocks in terms of their stability and ability to self-assemble, and I successfully design and create homodimeric and heterodimeric bivalent building blocks using the fusion-based assembly strategy. Overall, this study has gathered helpful information that will contribute to furthering the advancement of actinin and spectrin knowledge in terms of their natural functions, and potential unnatural functions in protein nanotechnology.