9 resultados para ELECTROCHEMICAL FORMATION

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pores are formed electrochemically in n-InP in KCl electrolytes with concentrations of 2 mol dm-3 or greater. The pore morphology is similar to what is seen in other halide-based electrolytes. At low potentials, crystallographically oriented (CO) pores are formed. At higher potentials, current-line oriented (CLO) pores are formed. Crystallographically oriented pore walls are observed for both pore morphologies. When formed at a constant current, potential oscillations are observed which have been correlated to oscillations in the pore width. The CLO pore wall smoothness and overall uniformity increase as KCl concentration is increased. The porous structures formed in KCl compare favourably with those formed in the more acidic or alkaline electrolytes that are typically used to form these structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The surface properties of InP electrodes were examined following anodization in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution, revealed surface pitting and TEM micrographs revealed the porous nature of the film formed on top of the pitted substrate. After anodization in the KOH electrolyte, TEM images revealed that a porous layer extending 500 nm into the substrate had been formed. Analysis of the composition of the anodic products indicates the presence of In2S3 in films grown in (NH4)2S and an In2O3 phase within the porous network formed in KOH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When porous InP is anodically formed in KOH electrolytes, a thin layer ~40 nm in thickness, close to the surface, appears to be unmodified. We have investigated the earlier stages of the anodic formation of porous InP in 5 mol dm-3 KOH. TEM clearly shows individual porous domains which appear triangular in cross-section and square in plan view. The crosssections also show that the domains are separated from the surface by a ~40 nm thick, dense InP layer. It is concluded that the porous domains have a square-based pyramidal shape and that each one develops from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain, and these domains eventually form a continuous porous layer. This implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this was seen in plan view TEM images. Merging of domains continues to occur at potentials more anodic than the peak potential, where the current is observed to decrease. When the domains grow, the current density increases correspondingly. Eventually, domains meet, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Quantitative models of this process are being developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents several routes towards achieving artificial opal templates by colloidal self-assembly of polystyrene (PS) or poly(methyl methacrylate) (PMMA) spheres and the use of these template for the fabrication of V2O5 inverse opals as cathode materials for lithium ion battery applications. First, through the manipulation of different experimental factors, several methods of affecting or directing opal growth towards realizing different structures, improving order and/or achieving faster formation on a variety of substrates are presented. The addition of the surfactant sodium dodecyl sulphate (SDS) at a concentration above the critical micelle concentration for SDS to a 5 wt% solution of PMMA spheres before dip-coating is presented as a method of achieving ordered 2D PhC monolayers on hydrophobic Au-coated silicon substrates at fast and slow rates of withdrawal. The effect that the degree of hydrophilicity of glass substrates has on the ordering of PMMA spheres is next investigated for a slow rate of withdrawal under noise agitation. Heating of the colloidal solution is also presented as a means of affecting order and thickness of opal deposits formed using fast rate dip coating. E-beam patterned substrates are shown as a means of altering the thermodynamically favoured FCC ordering of polystyrene spheres (PS) when dip coated at slow rate. Facile routes toward the synthesis of ordered V2O5 inverse opals are presented with direct infiltration of polymer sphere templates using liquid precursor. The use of different opal templates, both 2D and 3D partially ordered templates, is compared and the composition and arrangement of the subsequent IO structures post infiltration and calcination for various procedures is characterised. V2O5 IOs are also synthesised by electrodeposition from an aqueous VOSO4 solution at constant voltage. Electrochemical characterisation of these structures as cathode material for Li-ion batteries is assessed in a half cell arrangement for samples deposited on stainless steel foil substrates. Improved rate capabilities are demonstrated for these materials over bulk V2O5, with the improvement attributed to the shorter Li ion diffusion distances and increased electrolyte infiltration provided by the IO structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anodic behavior of highly doped (> 1018 cm-3) n-InP in aqueous KOH was investigated. Electrodes anodized in the absence of light in 2- 5 mol dm-3 KOH at a constant potential of 0.5- 0.75 V (SCE), or subjected to linear potential sweeps to potentials in this range, were shown to exhibit the formation of a nanoporous subsurface region. Both linear sweep voltammograms and current-time curves at constant potential showed a characteristic anodic peak, corresponding to formation of the nanoporous region. No porous region was formed during anodization in 1 mol dm-3 KOH. The nanoporous region was examined using transmission electron microscopy and found to have a thickness of some 1- 3 μm depending on the anodization conditions and to be located beneath a thin (typically ∼40 nm), dense, near-surface layer. The pores varied in width from 25 to 75 nm and both the pore width and porous region thickness were found to decrease with increasing KOH concentration. The porosity was approximately 35%. The porous layer structure is shown to form by the localized penetration of surface pits into the InP, and the dense, near-surface layer is consistent with the effect of electron depletion at the surface of the semiconductor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous layers can be formed electrochemically on (100) oriented n-InP substrates in aqueous KOH. A nanoporous layer is obtained underneath a dense near-surface layer and the pores appear to propagate from holes through the near-surface layer. In the early stages of the anodization transmission electron microscopy (TEM) clearly shows individual porous domains that appear to have a square-based pyramidal shape. Each domain appears to develop from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain. When the domains grow, the current density increases correspondingly. Eventually the domains meet, forming a continuous porous layer, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Current-time curves at constant potential exhibit a peak and porous layers are observed to form beneath the electrode surface. The density of pits formed on the surface increases with time and approaches a plateau value. Porous layers are also observed in highly doped InP but are not observed in wafers with doping densities below ~5 × 1017 cm-3. Numerical models of this process have been developed invoking a mechanism of directional selectivity of pore growth preferentially along the <100> lattice directions. Manipulation of the parameters controlling these curves shows that the fall-off in current is controlled by the rate of diffusion of electrolyte through the pore structure with the final decline in current being caused by the termination of growth at the pore tips through the formation of passivating films or some other irreversible modification of the pore tips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface pitting occurs when InP electrodes are anodized in KOH electrolytes at concentrations in the range 2 - 5 mol dm-3. The process has been investigated using atomic force microscopy (AFM) and the results correlated with cross-sectional transmission electron microscopy (TEM) and electroanalytical measurements. AFM measurements show that pitting of the surface occurs and the density of pits is observed to increase with time under both potentiodynamic and potentiostatic conditions. This indicates a progressive pit nucleation process and implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this is seen in plan view TEM images in which individual domains are seen to be at different stages of development. Analysis of the cyclic voltammograms of InP electrodes in 5 mol dm-3 KOH indicates that, above a critical potential for pit formation, the anodic current is predominantly time dependent and there is little differential dependence of the current on potential. Thus, pores continue to grow with time when the potential is high enough to maintain depletion layer breakdown conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous InP layers were formed electrochemically on (100) oriented n-InP substrates in various concentrations of aqueous KOH under dark conditions. In KOH concentrations from 2 mol dm-3 to 5 mol dm-3, a porous layer is obtained underneath a dense near-surface layer. The pores within the porous layer appear to propagate from holes through the near-surface layer. Transmission electron microscopy studies of the porous layers formed under both potentiodynamic and potentiostatic conditions show that both the thickness of the porous layer and the mean pore diameter decrease with increasing KOH concentration. The degree of porosity, estimated to be 65%, was found to remain relatively constant for all the porous layers studied.