3 resultados para ECOSYSTEM FUNCTIONING RELATIONSHIPS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global biodiversity is eroding at an alarming rate, through a combination of anthropogenic disturbance and environmental change. Ecological communities are bewildering in their complexity. Experimental ecologists strive to understand the mechanisms that drive the stability and structure of these complex communities in a bid to inform nature conservation and management. Two fields of research have had high profile success at developing theories related to these stabilising structures and testing them through controlled experimentation. Biodiversity-ecosystem functioning (BEF) research has explored the likely consequences of biodiversity loss on the functioning of natural systems and the provision of important ecosystem services. Empirical tests of BEF theory often consist of simplified laboratory and field experiments, carried out on subsets of ecological communities. Such experiments often overlook key information relating to patterns of interactions, important relationships, and fundamental ecosystem properties. The study of multi-species predator-prey interactions has also contributed much to our understanding of how complex systems are structured, particularly through the importance of indirect effects and predator suppression of prey populations. A growing number of studies describe these complex interactions in detailed food webs, which encompass all the interactions in a community. This has led to recent calls for an integration of BEF research with the comprehensive study of food web properties and patterns, to help elucidate the mechanisms that allow complex communities to persist in nature. This thesis adopts such an approach, through experimentation at Lough Hyne marine reserve, in southwest Ireland. Complex communities were allowed to develop naturally in exclusion cages, with only the diversity of top trophic levels controlled. Species removals were carried out and the resulting changes to predator-prey interactions, ecosystem functioning, food web properties, and stability were studied in detail. The findings of these experiments contribute greatly to our understanding of the stability and structure of complex natural communities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a prominent form of land use across much of upland Europe, extensive livestock grazing may hold the key to the sustainable management of these landscapes. Recent agricultural policy reform, however, has resulted in a decline in upland sheep numbers, prompting concern for the biodiversity value of these areas. This study quantifies the effects of varying levels of grazing management on plant, ground beetle and breeding bird diversity and assemblage in the uplands and lowlands of hill sheep farms in County Kerry, Ireland. Farms represent a continuum of light to heavy grazing, measured using a series of field indicators across several habitats, such as the internationally important blanket bog, home to the ground beetle, Carabus clatratus. Linear mixed effects modelling and non-metric multidimensional scaling are employed to disentangle the most influential management and environmental factors. Grazing state may be determined by the presence of Molinia caerulea or Nardus stricta, and variables such as % traditional ewes, % vegetation litter and % scrub prove valuable indicators of diversity. Measures of ecosystem functioning, e.g. plant biomass (nutrient cycling) and % vegetation cover (erosion rates) are influenced by plant diversity, which is influenced by grazing management. Levels of the ecosystem service, soil organic carbon, vary with ground beetle abundance and diversity, potentially influencing carbon sequestration and thereby climate change. The majority of species from all three taxa are found in the lowlands, with the exception of birds such as meadow pipit and skylark. The scale of measurement should be determined by the size and mobility of the species in question. The challenge is to manage these high nature value landscapes using agri-environment schemes which enhance biodiversity by maintaining structural heterogeneity across a range of scales, altitudes and habitats whilst integrating the decisions of people living and working in these marginal areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rise in invasive species, together with habitat destruction, is associated with worldwide declines in biodiversity and ecosystem functioning. Management of invasive species, as well as amelioration of invasion impacts, provide challenges to species and ecosystem ecologists and conservation managers. Although any species can become invasive if it is transported to, establishes in and spreads in a new environment outside of its native range, rodents are a particularly frequent invader. Rodent introductions are often inadvertent but are also commonly intentional as these animals are traded and transported as pets and may escape from captivity. Tree squirrel species are attractive to humans and are able to establish populations with only a few founding individuals, making them a group well suited to performing the role of biological invaders. The eastern grey squirrel (Sciurus carolinensis) is the most commonly introduced squirrel species worldwide. This research addressed the grey squirrel invasion and frontier population biology. Novel results were generated through diverse research techniques. Public sighting surveys and hairtube surveys were used to locate the southern frontier of grey squirrel range expansion in Ireland. A 22-month intensive live trapping study of two frontier populations facilitated the collection of personality and demographic data from squirrels in increasing populations. A systematic literature search on grey squirrel demography provided context for the studied populations, among frontier and established introduced populations, as well as those in the native range. Advanced spatially explicit population modeling techniques predicted future range expansion and objectively compared the outcomes of 12 grey squirrel management strategies. The methods and results are discussed in both a basic scientific and applied invasion management context. An improved understanding of the behaviour, population dynamics, and future scenarios at the frontier of species invasions is crucial for managers worldwide and this is provided here for the grey squirrel in Ireland.