1 resultado para E-isomers

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ellipticine, an anticancer agent, has had limited clinical success due to low solubility and toxic side effects. To overcome these limitations, a panel of novel ellipticine isomers were designed and synthesised with the aim of evaluating their anti-cancer effects on selected cancer cell lines. A preliminary NCI 60-cell screen demonstrated that these isoellipticines displayed promising anti-tumour activity across a number of different cell types, particularly leukaemia cell lines. We consequently examined the effect of these derivatives in detail on the Acute Myeloid Leukaemia (AML) cell line, MV4-11. Cell cycle analyses revealed that the compounds had a range of distinctive cell cycle effects on MV4-11 cells. 7-Hydroxyisoellipticine showed the most promise with respect to cytostatic activity. We demonstrated that this compound inhibited proliferation of leukaemia cells by preventing cells from progressing from G2 phase. Our research suggests that this is mediated by an induction of reactive oxygen species (ROS), which in turn activates the DNA damage response pathway. More extensive research on the source of ROS generated by the most potent derivative, 7-formyl-10-methylisoellipticine showed that this compounds cytotoxicity is partially mediated by an induction of mitochondrial derived reactive oxygen species (ROS). We showed that 7-formyl-10-methylisoellipticine has synergistic effects when used in combination with the clinically used AML drug, daunorubicin, as well as DPI, a Nox inhibitor. Additionally, combination experiments with other drugs served to give us a deeper insight into 7- formyl-10-methylisoellipticine mechanism of action. 7-Formyl-10-methylisoellipticine also displayed promising in vivo results. Treatment resulted in a lack of toxicity, as measured by body weight changes and liver enzyme analyses. Most importantly, 7-formyl-10-methylisoellipticine demonstrated potent anti-tumour activity in the in vivo xenograft mouse model, implying the potential of isoellipticines as novel chemotherapeutic agents in the treatment of leukaemia. In summary, this study provides for the first time detailed cellular information on the potential use of isoellipticines as chemotherapeutic agents. Our study documents for the first time, the therapeutic potential of an isoellipticine compound in a subcutaneous AML cell-derived xenograft (CDX) model. By probing the mechanism of action of this novel compound class we have uncovered a potential clinical application in the field of adjuvant therapy. We anticipate that the recent research on ellipticine derivatives, such as this study, will lead the development of an ellipticine analogue that may be employed clinically.