2 resultados para Dynamic behaviour

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the importance of renewable energy well-established worldwide, and targets of such energy quantified in many cases, there exists a considerable interest in the assessment of wind and wave devices. While the individual components of these devices are often relatively well understood and the aspects of energy generation well researched, there seems to be a gap in the understanding of these devices as a whole and especially in the field of their dynamic responses under operational conditions. The mathematical modelling and estimation of their dynamic responses are more evolved but research directed towards testing of these devices still requires significant attention. Model-free indicators of the dynamic responses of these devices are important since it reflects the as-deployed behaviour of the devices when the exposure conditions are scaled reasonably correctly, along with the structural dimensions. This paper demonstrates how the Hurst exponent of the dynamic responses of a monopile exposed to different exposure conditions in an ocean wave basin can be used as a model-free indicator of various responses. The scaled model is exposed to Froude scaled waves and tested under different exposure conditions. The analysis and interpretation is carried out in a model-free and output-only environment, with only some preliminary ideas regarding the input of the system. The analysis indicates how the Hurst exponent can be an interesting descriptor to compare and contrast various scenarios of dynamic response conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring user interaction activities provides the basis for creating a user model that can be used to predict user behaviour and enable user assistant services. The BaranC framework provides components that perform UI monitoring (and collect all associated context data), builds a user model, and supports services that make use of the user model. In this case study, a Next-App prediction service is built to demonstrate the use of the framework and to evaluate the usefulness of such a prediction service. Next-App analyses a user's data, learns patterns, makes a model for a user, and finally predicts based on the user model and current context, what application(s) the user is likely to want to use. The prediction is pro-active and dynamic; it is dynamic both in responding to the current context, and also in that it responds to changes in the user model, as might occur over time as a user's habits change. Initial evaluation of Next-App indicates a high-level of satisfaction with the service.