2 resultados para Dynamic Emission Models

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic positron emission tomography (PET) imaging can be used to track the distribution of injected radio-labelled molecules over time in vivo. This is a powerful technique, which provides researchers and clinicians the opportunity to study the status of healthy and pathological tissue by examining how it processes substances of interest. Widely used tracers include 18F-uorodeoxyglucose, an analog of glucose, which is used as the radiotracer in over ninety percent of PET scans. This radiotracer provides a way of quantifying the distribution of glucose utilisation in vivo. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue function. As the residue represents the amount of tracer remaining in the tissue, this can be thought of as a survival function; these functions been examined in great detail by the statistics community. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as ow, ux and volume of distribution. This thesis presents a Markov chain formulation of blood tissue exchange and explores how this relates to established compartmental forms. A nonparametric approach to the estimation of the residue is examined and the improvement in this model relative to compartmental model is evaluated using simulations and cross-validation techniques. The reference distribution of the test statistics, generated in comparing the models, is also studied. We explore these models further with simulated studies and an FDG-PET dataset from subjects with gliomas, which has previously been analysed with compartmental modelling. We also consider the performance of a recently proposed mixture modelling technique in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain injury due to lack of oxygen or impaired blood flow around the time of birth, may cause long term neurological dysfunction or death in severe cases. The treatments need to be initiated as soon as possible and tailored according to the nature of the injury to achieve best outcomes. The Electroencephalogram (EEG) currently provides the best insight into neurological activities. However, its interpretation presents formidable challenge for the neurophsiologists. Moreover, such expertise is not widely available particularly around the clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, an automated computerized system for detecting and grading the severity of brain injuries could be of great help for medical staff to diagnose and then initiate on-time treatments. In this study, automated systems for detection of neonatal seizures and grading the severity of Hypoxic-Ischemic Encephalopathy (HIE) using EEG and Heart Rate (HR) signals are presented. It is well known that there is a lot of contextual and temporal information present in the EEG and HR signals if examined at longer time scale. The systems developed in the past, exploited this information either at very early stage of the system without any intelligent block or at very later stage where presence of such information is much reduced. This work has particularly focused on the development of a system that can incorporate the contextual information at the middle (classifier) level. This is achieved by using dynamic classifiers that are able to process the sequences of feature vectors rather than only one feature vector at a time.