3 resultados para Droppin Knowledge Series
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The Internet and World Wide Web have had, and continue to have, an incredible impact on our civilization. These technologies have radically influenced the way that society is organised and the manner in which people around the world communicate and interact. The structure and function of individual, social, organisational, economic and political life begin to resemble the digital network architectures upon which they are increasingly reliant. It is increasingly difficult to imagine how our ‘offline’ world would look or function without the ‘online’ world; it is becoming less meaningful to distinguish between the ‘actual’ and the ‘virtual’. Thus, the major architectural project of the twenty-first century is to “imagine, build, and enhance an interactive and ever changing cyberspace” (Lévy, 1997, p. 10). Virtual worlds are at the forefront of this evolving digital landscape. Virtual worlds have “critical implications for business, education, social sciences, and our society at large” (Messinger et al., 2009, p. 204). This study focuses on the possibilities of virtual worlds in terms of communication, collaboration, innovation and creativity. The concept of knowledge creation is at the core of this research. The study shows that scholars increasingly recognise that knowledge creation, as a socially enacted process, goes to the very heart of innovation. However, efforts to build upon these insights have struggled to escape the influence of the information processing paradigm of old and have failed to move beyond the persistent but problematic conceptualisation of knowledge creation in terms of tacit and explicit knowledge. Based on these insights, the study leverages extant research to develop the conceptual apparatus necessary to carry out an investigation of innovation and knowledge creation in virtual worlds. The study derives and articulates a set of definitions (of virtual worlds, innovation, knowledge and knowledge creation) to guide research. The study also leverages a number of extant theories in order to develop a preliminary framework to model knowledge creation in virtual worlds. Using a combination of participant observation and six case studies of innovative educational projects in Second Life, the study yields a range of insights into the process of knowledge creation in virtual worlds and into the factors that affect it. The study’s contributions to theory are expressed as a series of propositions and findings and are represented as a revised and empirically grounded theoretical framework of knowledge creation in virtual worlds. These findings highlight the importance of prior related knowledge and intrinsic motivation in terms of shaping and stimulating knowledge creation in virtual worlds. At the same time, they highlight the importance of meta-knowledge (knowledge about knowledge) in terms of guiding the knowledge creation process whilst revealing the diversity of behavioural approaches actually used to create knowledge in virtual worlds and. This theoretical framework is itself one of the chief contributions of the study and the analysis explores how it can be used to guide further research in virtual worlds and on knowledge creation. The study’s contributions to practice are presented as actionable guide to simulate knowledge creation in virtual worlds. This guide utilises a theoretically based classification of four knowledge-creator archetypes (the sage, the lore master, the artisan, and the apprentice) and derives an actionable set of behavioural prescriptions for each archetype. The study concludes with a discussion of the study’s implications in terms of future research.
Resumo:
It is estimated that the quantity of digital data being transferred, processed or stored at any one time currently stands at 4.4 zettabytes (4.4 × 2 70 bytes) and this figure is expected to have grown by a factor of 10 to 44 zettabytes by 2020. Exploiting this data is, and will remain, a significant challenge. At present there is the capacity to store 33% of digital data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These statistics suggest that, in the era of Big Data, the identification of important, exploitable data will need to be done in a timely manner. Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and sensor networks, can be made up of massive numbers of individual components. These components can be geographically distributed yet may interact with one another via continuous data streams, which in turn may affect the state of the sender or receiver. This introduces a dynamic causality, which further complicates the overall system by introducing a temporal constraint that is difficult to accommodate. Practical approaches to realising the system described above have led to a multiplicity of analysis techniques, each of which concentrates on specific characteristics of the system being analysed and treats these characteristics as the dominant component affecting the results being sought. The multiplicity of analysis techniques introduces another layer of heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that results from one domain are difficult to exploit in another. The question is asked can a generic solution for the monitoring and analysis of data that: accommodates temporal constraints; bridges the gap between expert knowledge and raw data; and enables data to be effectively interpreted and exploited in a transparent manner, be identified? The approach proposed in this dissertation acquires, analyses and processes data in a manner that is free of the constraints of any particular analysis technique, while at the same time facilitating these techniques where appropriate. Constraints are applied by defining a workflow based on the production, interpretation and consumption of data. This supports the application of different analysis techniques on the same raw data without the danger of incorporating hidden bias that may exist. To illustrate and to realise this approach a software platform has been created that allows for the transparent analysis of data, combining analysis techniques with a maintainable record of provenance so that independent third party analysis can be applied to verify any derived conclusions. In order to demonstrate these concepts, a complex real world example involving the near real-time capturing and analysis of neurophysiological data from a neonatal intensive care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that data using different analysis techniques, uncover information, incorporate that information into the system and curate the evolution of the discovered knowledge. The application domain was chosen for three reasons: firstly because it is complex and no comprehensive solution exists; secondly, it requires tight interaction with domain experts, thus requiring the handling of subjective knowledge and inference; and thirdly, given the dearth of neurophysiologists, there is a real world need to provide a solution for this domain
Resumo:
Background: Falls are common events in older people, which cause considerable morbidity and mortality. Non-pharmacological interventions are an important approach to prevent falls. There are a large number of systematic reviews of non-pharmacological interventions, whose evidence needs to be synthesized in order to facilitate evidence-based clinical decision making. Objectives: To systematically examine reviews and meta-analyses that evaluated non-pharmacological interventions to prevent falls in older adults in the community, care facilities and hospitals. Methods: We searched the electronic databases Pubmed, the Cochrane Database of Systematic Reviews, EMBASE, CINAHL, PsycINFO, PEDRO and TRIP from January 2009 to March 2015, for systematic reviews that included at least one comparative study, evaluating any non-pharmacological intervention, to prevent falls amongst older adults. The quality of the reviews was assessed using AMSTAR and ProFaNE taxonomy was used to organize the interventions. Results: Fifty-nine systematic reviews were identified which consisted of single, multiple and multi-factorial non-pharmacological interventions to prevent falls in older people. The most frequent ProFaNE defined interventions were exercises either alone or combined with other interventions, followed by environment/assistive technology interventions comprising environmental modifications, assistive and protective aids, staff education and vision assessment/correction. Knowledge was the third principle class of interventions as patient education. Exercise and multifactorial interventions were the most effective treatments to reduce falls in older adults, although not all types of exercise were equally effective in all subjects and in all settings. Effective exercise programs combined balance and strength training. Reviews with a higher AMSTAR score were more likely to contain more primary studies, to be updated and to perform meta-analysis. Conclusions: The aim of this overview of reviews of non-pharmacological interventions to prevent falls in older people in different settings, is to support clinicians and other healthcare workers with clinical decision-making by providing a comprehensive perspective of findings.