7 resultados para Drop Test Equipment.

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel miniaturised system for measurement of the in-flight characteristics of an arrow is introduced in this paper. The system allows the user to measure in-flight parameters such as the arrow’s speed, kinetic energy and momentum, arrow drag and vibrations of the arrow shaft. The system consists of electronics, namely a three axis accelerometer, shock switch, microcontroller and EEPROM memory embedded in the arrow tip. The system also includes a docking station for download and processing of in-flight ballistic data from the tip to provide the measured values. With this system, a user can evaluate and optimize their archery equipment setup based on measured ballistic values. Recent test results taken at NIST show the accuracy of the launch velocities to be within +/- 0.59%, when compared with NIST’s most accurate ballistic chronograph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeleton is a high‐speed Winter Olympic sport performed on the same twisting, downhill ice tracks used for Bobsleigh & Luge. The single rider sprints and pushes their sled for 20‐30m on a level start section before loading and going through a twisting course of over 1km, at speeds up to 140km/h, experiencing up to 5g. In competition, the top athletes can be within a fraction of a second of each other. The initial short pushing period is believed to be critical to overall performance but it is not well understood. A collaborative project between University of Bath, UK Sport and Tyndall National Institute is instrumenting skeleton athletes, training equipment and test tracks with Tyndall’s Wireless Inertial Measurement Unit technology in order to investigate and improve understanding of this phase of a skeleton run. It is hoped this will lead to improved training regimes and better performance of such elite, Olympic level athletes. This work presents an initial look at the system as implemented and data recorded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wave energy industry is progressing towards an advanced stage of development, with consideration being given to the selection of suitable sites for the first commercial installations. An informed, and accurate, characterisation of the wave energy resource is an essential aspect of this process. Ireland is exposed to an energetic wave climate, however many features of this resource are not well understood. This thesis assesses and characterises the wave energy resource that has been measured and modelled at the Atlantic Marine Energy Test Site, a facility for conducting sea trials of floating wave energy converters that is being developed near Belmullet, on the west coast of Ireland. This characterisation process is undertaken through the analysis of metocean datasets that have previously been unavailable for exposed Irish sites. A number of commonly made assumptions in the calculation of wave power are contested, and the uncertainties resulting from their application are demonstrated. The relationship between commonly used wave period parameters is studied, and its importance in the calculation of wave power quantified, while it is also shown that a disconnect exists between the sea states which occur most frequently at the site and those that contribute most to the incident wave energy. Additionally, observations of the extreme wave conditions that have occurred at the site and estimates of future storms that devices will need to withstand are presented. The implications of these results for the design and operation of wave energy converters are discussed. The foremost contribution of this thesis is the development of an enhanced understanding of the fundamental nature of the wave energy resource at the Atlantic Marine Energy Test Site. The results presented here also have a wider relevance, and can be considered typical of other, similarly exposed, locations on Ireland’s west coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis initially gives an overview of the wave industry and the current state of some of the leading technologies as well as the energy storage systems that are inherently part of the power take-off mechanism. The benefits of electrical energy storage systems for wave energy converters are then outlined as well as the key parameters required from them. The options for storage systems are investigated and the reasons for examining supercapacitors and lithium-ion batteries in more detail are shown. The thesis then focusses on a particular type of offshore wave energy converter in its analysis, the backward bent duct buoy employing a Wells turbine. Variable speed strategies from the research literature which make use of the energy stored in the turbine inertia are examined for this system, and based on this analysis an appropriate scheme is selected. A supercapacitor power smoothing approach is presented in conjunction with the variable speed strategy. As long component lifetime is a requirement for offshore wave energy converters, a computer-controlled test rig has been built to validate supercapacitor lifetimes to manufacturer’s specifications. The test rig is also utilised to determine the effect of temperature on supercapacitors, and determine application lifetime. Cycle testing is carried out on individual supercapacitors at room temperature, and also at rated temperature utilising a thermal chamber and equipment programmed through the general purpose interface bus by Matlab. Application testing is carried out using time-compressed scaled-power profiles from the model to allow a comparison of lifetime degradation. Further applications of supercapacitors in offshore wave energy converters are then explored. These include start-up of the non-self-starting Wells turbine, and low-voltage ride-through examined to the limits specified in the Irish grid code for wind turbines. These applications are investigated with a more complete model of the system that includes a detailed back-to-back converter coupling a permanent magnet synchronous generator to the grid. Supercapacitors have been utilised in combination with battery systems for many applications to aid with peak power requirements and have been shown to improve the performance of these energy storage systems. The design, implementation, and construction of coupling a 5 kW h lithium-ion battery to a microgrid are described. The high voltage battery employed a continuous power rating of 10 kW and was designed for the future EV market with a controller area network interface. This build gives a general insight to some of the engineering, planning, safety, and cost requirements of implementing a high power energy storage system near or on an offshore device for interface to a microgrid or grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to widely use Ge and III-V materials instead of Si in advanced CMOS technology, the process and integration of these materials has to be well established so that their high mobility benefit is not swamped by imperfect manufacturing procedures. In this dissertation number of key bottlenecks in realization of Ge devices are investigated; We address the challenge of the formation of low resistivity contacts on n-type Ge, comparing conventional and advanced rapid thermal annealing (RTA) and laser thermal annealing (LTA) techniques respectively. LTA appears to be a feasible approach for realization of low resistivity contacts with an incredibly sharp germanide-substrate interface and contact resistivity in the order of 10 -7 Ω.cm2. Furthermore the influence of RTA and LTA on dopant activation and leakage current suppression in n+/p Ge junction were compared. Providing very high active carrier concentration > 1020 cm-3, LTA resulted in higher leakage current compared to RTA which provided lower carrier concentration ~1019 cm-3. This is an indication of a trade-off between high activation level and junction leakage current. High ION/IOFF ratio ~ 107 was obtained, which to the best of our knowledge is the best reported value for n-type Ge so far. Simulations were carried out to investigate how target sputtering, dose retention, and damage formation is generated in thin-body semiconductors by means of energetic ion impacts and how they are dependent on the target physical material properties. Solid phase epitaxy studies in wide and thin Ge fins confirmed the formation of twin boundary defects and random nucleation growth, like in Si, but here 600 °C annealing temperature was found to be effective to reduce these defects. Finally, a non-destructive doping technique was successfully implemented to dope Ge nanowires, where nanowire resistivity was reduced by 5 orders of magnitude using PH3 based in-diffusion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Identifying mild cognitive impairment (MCI) is challenging. Few short instruments have sufficient sensitivity and specificity for use in busy clinical practice. This thesis explores the development, psychometric evaluation and validation of a new short (3–5 min) cognitive screening instrument, designed to screen for MCI and early dementia, called the Quick Mild Cognitive Impairment (Q