2 resultados para Dominance of roots
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Blanket bog lakes are a characteristic feature of blanket bog habitats and harbour many rare and threatened invertebrate species. Despite their potential conservation value, however, very little is known about their physico-chemical or biological characteristics in western Europe, and their reference conditions are still unknown in Ireland. Furthermore, they are under considerable threat in Ireland from a number of sources, particularly afforestation of their catchments by exotic conifers. Plantation forestry can potentially lead to the increased input of substances including hydrogen ions (H+), plants nutrients, dissolved organic carbon (DOC), heavy metals and sediment. The aims of this study were to investigate the effect of conifer plantation forestry on the hydrochemistry and ecology of blanket bog lakes in western Ireland. Lake hydrochemistry, littoral Chydoridae (Cladocera) and littoral macroinvertebrate communities were compared among replicate lakes selected from three distinct catchment land use categories: i) unplanted blanket bog only present in the catchment, ii) mature (closed-canopy) conifer plantation forests only present in the catchment and iii) catchments containing mature conifer plantation forests with recently clearfelled areas. All three catchment land uses were replicated across two geologies: sandstone and granite. Lakes with afforested catchments across both geologies had elevated concentrations of phosphorus (P), nitrogen (N), total dissolved organic carbon (TDOC), aluminium (Al) and iron (Fe), with the highest concentrations of each parameter recorded from lakes with catchment clearfelling. Dissolved oxygen concentrations were also significantly reduced in the afforested lakes, particularly the clearfell lakes. This change in lake hydrochemistry was associated with profound changes in lake invertebrate communities. Within the chydorid communities, the dominance of Alonopsis elongata in the unplanted blanket bog lakes shifted to dominance by the smaller bodied Chydorus sphaericus, along with Alonella nana, Alonella excisa and Alonella exigua, in the plantation forestry-affected lakes, consistent with a shift in lake trophy. Similarly, there was marked changes in the macroinvertebrate communities, especially for the Coleoptera and Heteroptera assemblages which revealed increased taxon richness and abundance in the nutrient-enriched lakes. In terms of conservation status, despite having the greatest species-quality scores (SQS) and species richness, three of the four International Union for the Conservation of Nature (IUCN) red-listed species of Coleoptera and Odonata recorded during the study were absent from lakes subject to catchment clearfelling. The relative strengths of bottom-up (forestry-mediated nutrient enrichment) and top-down (fish) forces in structuring littoral macroinvertebrate communities was investigated in a separate study. Nutrient enrichment was shown to be the dominant force acting on communities, with fish having a lesser influence. These results confirmed that plantation forestry poses the single greatest threat to the conservation status of blanket bog lakes in western Ireland. The findings of this study have major implications for the management of afforested peatlands. Further research is required on blanket bog lakes to prevent any further plantation forestry-mediated habitat deterioration of this rare and protected habitat.
Resumo:
Coastal lagoons are defined as shallow coastal water bodies partially separated from the adjacent sea by a restrictive barrier. Coastal lagoons are protected under Annex I of the European Habitats Directive (92/43/EEC). Lagoons are also considered to be “transitional water bodies” and are therefore included in the “register of protected areas” under the Water Framework Directive (2000/60/EC). Consequently, EU member states are required to establish monitoring plans and to regularly report on lagoon condition and conservation status. Irish lagoons are considered relatively rare and unusual because of their North Atlantic, macrotidal location on high energy coastlines and have received little attention. This work aimed to assess the physicochemical and ecological status of three lagoons, Cuskinny, Farranamanagh and Toormore, on the southwest coast of Ireland. Baseline salinity, nutrient and biological conditions were determined in order to provide reference conditions to detect perturbations, and to inform future maintenance of ecosystem health. Accumulation of organic matter is an increasing pressure in coastal lagoon habitats worldwide, often compounding existing eutrophication problems. This research also aimed to investigate the in situ decomposition process in a lagoon habitat together with exploring the associated invertebrate assemblages. Re-classification of the lagoons, under the guidelines of the Venice system for the classifications of marine waters according to salinity, was completed by taking spatial and temporal changes in salinity regimes into consideration. Based on the results of this study, Cuskinny, Farranamanagh and Toormore lagoons are now classified as mesohaline (5 ppt – 18 ppt), oligohaline (0.5 ppt – 5 ppt) and polyhaline (18 ppt – 30 ppt), respectively. Varying vertical, longitudinal and transverse salinity patterns were observed in the three lagoons. Strong correlations between salinity and cumulative rainfall highlighted the important role of precipitation in controlling the lagoon environment. Maximum effect of precipitation on the salinity of the lagoon was observed between four and fourteen days later depending on catchment area geology, indicating the uniqueness of each lagoon system. Seasonal nutrient patterns were evident in the lagoons. Nutrient concentrations were found to be reflective of the catchment area and the magnitude of the freshwater inflow. Assessment based on the Redfield molar ratio indicated a trend towards phosphorus, rather than nitrogen, limitation in Irish lagoons. Investigation of the decomposition process in Cuskinny Lagoon revealed that greatest biomass loss occurred in the winter season. Lowest biomass loss occurred in spring, possibly due to the high density of invertebrates feeding on the thick microbial layer rather than the decomposing litter. It has been reported that the decomposition of plant biomass is highest in the preferential distribution area of the plant species; however, no similar trend was observed in this study with the most active zones of decomposition varying spatially throughout the seasons. Macroinvertebrate analysis revealed low species diversity but high abundance, indicating the dominance of a small number of species. Invertebrate assemblages within the lagoon varied significantly from communities in the adjacent freshwater or marine environments. Although carried out in coastal lagoons on the southwest coast of Ireland, it is envisaged that the overall findings of this study have relevance throughout the entire island of Ireland and possibly to many North Atlantic coastal lagoon ecosystems elsewhere.